DOI QR코드

DOI QR Code

Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach

  • Bubryur Kim (Department of Robot and Smart System Engineering, Kyungpook National University) ;
  • K.R. Sri Preethaa (Department of Computer Science and Engineering, KPR Institute of Engineering and Technology) ;
  • Zengshun Chen (School of Civil Engineering, Chongqing University) ;
  • Yuvaraj Natarajan (Department of Robot and Smart System Engineering, Kyungpook National University) ;
  • Gitanjali Wadhwa (Department of Computer Science and Engineering, KPR Institute of Engineering and Technology) ;
  • Hong Min Lee (Engineering Co., Ltd.)
  • 투고 : 2022.08.08
  • 심사 : 2023.01.12
  • 발행 : 2023.06.25

초록

Structural health monitoring is used to ensure the well-being of civil structures by detecting damage and estimating deterioration. Wind flow applies external loads to high-rise buildings, with the horizontal force component of the wind causing structural displacements in high-rise buildings. This study proposes a deep learning-based predictive model for measuring lateral displacement response in high-rise buildings. The proposed long short-term memory model functions as a sequence generator to generate displacements on building floors depending on the displacement statistics collected on the top floor. The model was trained with wind-induced displacement data for the top floor of a high-rise building as input. The outcomes demonstrate that the model can forecast wind-induced displacement on the remaining floors of a building. Further, displacement was predicted for each floor of the high-rise buildings at wind flow angles of 0° and 45°. The proposed model accurately predicted a high-rise building model's story drift and lateral displacement. The outcomes of this proposed work are anticipated to serve as a guide for assessing the overall lateral displacement of high-rise buildings.

키워드

과제정보

This research was supported by Kyungpook National University Research Fund, 2021.

참고문헌

  1. Chen, F.B., Liu, H.M., Chen, W., Shu, Z.R., Li, Y. and Li, Q.S. (2022), "Characterizing wind pressure on CAARC standard tall building with various facade appurtenances", J. Build. Eng., 59,105015. https://doi.org/10.1016/j.jobe.2022.105015.
  2. Chen, F.B., Wang. X.L., Li, X., Shu. Z.R. and Zhou, K. (2022), "Prediction of wind pressures on tall buildings using wavelet neural network", J. Build. Eng., 46, 103674. https://doi.org/10.1016/j.jobe.2021.103674.
  3. Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting system", The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, August. https://doi.org/10.1145/2939672.2939785.
  4. Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://link.springer.com/article/10.1007/BF00994018.
  5. Dong, H., He, D. and Wang, F. (2020), "SMOTE-XGBoost using Tree Parzen Estimator optimization for copper flotation method classification", Powder Technol., 375, 174-181. https://doi.org/10.1016/j.powtec.2020.07.065.
  6. Durbin, M., Wonders, M., Flaska, M. and Lintereur, A.T. (2021), "K-Nearest Neighbors regression for the discrimination of gamma rays and neutrons in organic scintillators", Nuclear Inst. Meth. Phys. Res., 987, 164826. https://doi.org/10.1016/j.nima.2020.164826.
  7. GB 50009-2012 (2012), Load Code for the Design of Building Structures. China Architecture and Building Press; Beijing, China.
  8. Gu, M. and Quan, Y. (2004), "Across-wind loads of typical tall buildings", J. Wind Eng. Indust. Aerodyn., 92(13), 1147-1165. https://doi.org/10.1016/j.jweia.2004.06.004.
  9. Guo, Q., Zhuang, T., Li, Z. and He, S. (2021), "Prediction of reservoir saturation field in high water cut stage by bore-ground electromagnetic method based on machine learning", J. Petroleum Sci. Eng., 204, 108678. https://doi.org/10.1016/j.petrol.2021.108678.
  10. Hashemizadeh, A., Maaref, A., Shateri, M., Larestani, A. and Hemmati-Sarapardeh, A. (2021), "Experimental measurement and modeling of water-based drilling mud density using adaptive boosting decision tree, support vector machine, and K-nearest neighbors: A case study from the South Pars gas field", J. Petroleum Sci. Eng., 207, 109132. https://doi.org/10.1016/j.petrol.2021.109132.
  11. Hu, G. and Kwok K.C.S. (2020), "Predicting wind pressures around circular cylinders using machine learning techniques", J. Wind Eng. Ind. Aerodyn., 198, 104099. https://doi.org/10.1016/j.jweia.2020.104099.
  12. Hu, G., Liu, L., Tao, D., Song, J., Kse, K.T. and Kwok K.C.S. (2020), "Deep learning-based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Ind. Aerodyn., 201, 104138. https://doi.org/10.1016/j.jweia.2020.104138.
  13. Jo, Y., Min, K., Jung, D., Sunwoo, M. and Han, M. (2019), "Comparative study of the artificial neural network with three hyper-parameter optimization methods for the precise LP-EGR estimation using in-cylinder pressure in a turbocharged GDI engine", Appl. Therm. Eng., 149, 1324-1334. https://doi.org/10.1016/j.applthermaleng.2018.12.139.
  14. Kareem, A. (1990), "Measurements of pressure and force fields on building models in simulated atmospheric flows", J. Wind Eng. Ind. Aerodyn., 36, 589-599. https://doi.org/10.1016/0167-6105(90)90341-9.
  15. Kokkinos, Y. and Margaritis, K.G. (2018), "Managing the computational cost of model selection and cross-validation in extreme learning machines via Cholesky, SVD, QR and eigen decompositions", Neurocomput., 295, 29-45. https://doi.org/10.1016/j.neucom.2018.01.005.
  16. Kotsiantis, S.B. (2007), "Supervised machine learning: a review of classification techniques", Informatica, 31, 249-268.
  17. Li, X. and Li, Q.S. (2019), "Observations of typhoon effects on a high-rise building and verification of wind tunnel predictions", J. Wind Eng. Ind. Aerodyn., 184, 174-184. https://doi.org/10.1016/j.jweia.2018.11.026.
  18. Li, Y., Song, Q., Li, C., Huang, X. and Zhang, Y. (2022), "Reduction of wind loads on rectangular tall buildings with different taper ratios", J. Build. Eng., 46, 103588. https://doi.org/10.1016/j.jobe.2021.103588.
  19. Li, Y., Li, C., Li, Q.S., Li, Y.G. and Chen, F.B. (2021), "Refined mathematical models for across-wind loads of rectangular tall buildings with aerodynamic modifications", Int. J. Struct. Stabil. Dyn., 21(9), 2150131. https://doi.org/10.1142/S0219455421501315.
  20. Li, Y., Li, C., Li, Q.S., Song, Q., Huang X. and Li, Y.G. (2020), "Aerodynamic performance of CAARC standard tall building model by various corner chamfers", J. Wind Eng. Ind. Aerodyn., 202, 104197. https://doi.org/10.1016/j.jweia.2020.104197.
  21. Li, Y. and Li, Q.S. (2016), "Across-wind dynamic loads on L-shaped tall buildings", Wind Struct., 23(5), 385-403. https://www.researchgate.net/publication/309670618. https://doi.org/10.12989/was.2016.23.5.385
  22. Li, Y., Li, Q.S. and Chen, F. (2017), "Wind tunnel study of wind-induced torques on L-shaped tall buildings", J. Wind Eng. Ind. Aerodyn., 167, 41-50. https://doi.org/10.1016/j.jweia.2017.04.013.
  23. Li, Y., Li, Y. G., Li, Q.S. and Tee, K. F. (2019), "Investigation of wind effect reduction on square high-rise buildings by corner modification", Adv. Struct. Eng., 22(6), 1488-1500. https://doi.org/10.1177/136943321881611.
  24. Li, Y., Tian, X., Tee, K.F., Li, Q.S. and Li, Y.G. (2018), "Aerodynamic treatments for reduction of wind loads on high-rise buildings", J. Wind Eng. Ind. Aerodyn., 172, 107-115. https://doi.org/10.1016/j.jweia.2017.11.006.
  25. Li, Y., Zhang, J.W., and Li, Q.S. (2014), "Experimental investigation of characteristics of torsional wind loads on rectangular tall buildings", Struct. Eng. Mech., 49(1), 129-145. https://doi.org/10.12989/sem.2014.49.1.129.
  26. Liang, S.G., Liu, S.C., Li, Q.S., Zhang, L.L and Gu, M. (2002), "Mathematic model of acrosswind dynamic loads on rectangular tall buildings", J. Wind Eng. Indust. Aerodyn., 90, 1757-1770. https://doi.org/10.1016/S0167-6105(02)00285-4.
  27. Lin, N., Letchford, C., Tamura, Y., Liang, B. and Nakamura, O. (2005), "Characteristics of wind forces acting on tall buildings", J. Wind Eng. Indust. Aerodyn., 93(3), 217-242. https://doi.org/10.1016/j.jweia.2004.12.001.
  28. Lin, P.F., Hu, G., Li, C., Li, L.X., Xiao, Y.Q., Tse. K.T. and Kwok, K.C.S. (2021), "Machine learning-based prediction of crosswind vibrations of rectangular cylinders", J. Wind Eng. Ind. Aerodyn., 211, 104549. https://doi.org/10.1016/j.jweia.2021.104549.
  29. Liu, J., Huang, Q., Ulishney, C. and Dumitrescu, C.E. (2021), "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine", Appl. Energ., 300, 117413. https://doi.org/10.1016/j.apenergy.2021.117413.
  30. Melbourne, W.H. (1980), "Comparison of measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerodyn., 6(1-2), 73-88. https://doi.org/10.1016/0167-6105(80)90023-9.
  31. Morariu, C., Morariu O., Raileanu, S. and Borangiu, T. (2020), "Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems", Comput. Industry, 120, 103244. https://doi.org/10.1016/j.compind.2020.103244.
  32. Nguyen, H., Liu J. and Zio, E. (2020), "A long-term prediction approach based on long short-term memory neural networks with automatic parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators", Appl. Soft. Comput. J., 89, 106116. https://doi.org/10.1016/j.asoc.2020.106116.
  33. Osarogiagbon, A.U., Khan F., Venkatesan, R. and Gillard, P. (2021), "Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations", Process Safety Environ. Protect., 147, 367-384. https://doi.org/10.1016/j.psep.2020.09.038.
  34. Pan, Z., Wang, Y. and Pan, Y. (2020), "A new locally adaptive k-nearest neighbor algorithm based on discrimination class", Knowl.-Based Syst., 204, 106185. https://doi.org/10.1016/j.knosys.2020.106185.
  35. Ramadhan, R.A., Heatubun Y.R., Tan, S.F. and Lee, H. (2021), "Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power", Renew. Energ., 178, 1006-1019. https://doi.org/10.1016/j.renene.2021.06.079.
  36. Refaeilzadeh, P., Tang, L. and Huan, L. (2009), Cross-Validation, in: Encyclopedia of Database Systems, Springer US, Boston, 532-538.
  37. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-OImo, M. and Chica-Rivas, M. (2015). "Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines", Ore Geology Rev., 71, 804-818. https://doi.org/10.1016/j.oregeorev.2015.01.001.
  38. Su, X., An, J., Zhang, Y., Zhu, P. and Zhu, B. (2020). "Prediction of ozone hourly concentrations by support vector machine and kernel extreme learning machine using wavelet transformation and partial least squares methods", Atmos. Pollut. Res., 11, 51-60. https://doi.org/10.1016/j.apr.2020.02.024.
  39. Tao, T., Liu, Y., Qiao, Y., Gao, L., Lu, J., Zhang, C. and Wang, Y. (2021). "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm", Renew. Energ., 180, 1004-1013. https://doi.org/10.1016/j.renene.2021.09.008.
  40. Tian, J., Gurley, K.R., Diaz, M.T., Fernandez-Caban, P.L., Masters, F.J. and Fang, R. (2020). "Low-rise gable roof buildings pressure prediction using deep neural networks", J. Wind Eng. Ind. Aerodyn., 196, 104026. https://doi.org/10.1016/j.jweia.2019.104026.
  41. Tian, Z., Xiao, J., Feng, H. and Wei, Y. (2020). "Credit risk assessment based on gradient boosting decision tree", Procedia Comp. Sci., 174, 150-160. https://doi.org/10.1016/j.procs.2020.06.070.
  42. Tixier, A.P., Hallowell, M.R., Rajagopalan, B. and Bowman, D. (2016). "Application of machine learning to construction injury prediction", Automat. Construct., 69, 102-114. https://doi.org/10.1016/j.autcon.2016.05.016.
  43. Trizoglou, P., Liu, X. and Lin, Z. (2021). "Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines", Renew. Energ., 179, 945-962. https://doi.org/10.1016/j.renene.2021.07.085
  44. Vakharia, V. and Gujar, R. (2019), "Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques", Construct. Build. Mater., 225, 292-301. https://doi.org/10.1016/j.conbuildmat.2019.07.224.
  45. Vapnik, V., Golowich, S.E. and Smola, A. (1997), "Support vector method for function approximation, regression estimation, and signal processing", Adv. Neural Info. Process. Syst., 281-287.
  46. Wang, J. and Hu, J. (2015), "A robust combination approach for short-term wind speed forecasting and analysis - combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model", Energ., 93, 41-56. https://doi.org/10.1016/j.energy.2015.08.045.
  47. Wu, T. and Snaiki, R. (2022), "Applications of machine learning to wind engineering", Frontiers Built Environ., 8, 811460. https://doi.org/10.3389/fbuil.2022.811460.
  48. Yan, B.W., Ding, W.H., Zhou, X.H., Guo, K.P., Ren, H.Y., Li, X. and Yang, Q.S. (2023), "Experimental study on the aeroelastic response of a square supertall building considering twisted wind effect", Eng. Struct., 283, 115923. https://doi.org/10.1016/j.engstruct.2023.115923.
  49. Yan, Y., Lu, D. and Wang, K. (2021), "Accelerated discovery of single-phase refractory high entropy alloys assisted by machine learning", Comput. Mater. Sci., 199, 110723. https://doi.org/10.1016/j.commatsci.2021.110723.
  50. Yang, L. and Shami, A. (2020), "On hyperparameter optimization of machine learning algorithms: theory and practice", Neurocomput., 415, 295-316. https://doi.org/10.1016/j.neucom.2020.07.061.
  51. Yanamandra, K., Chen, G.L., Xu, X., Mac, G. and Gupta, N. (2020), "Reverse engineering of additive manufactured composite part by tool path reconstruction using imaging and machine learning", Compos. Sci. Technol., 198, 108318. https://doi.org/10.1016/j.compscitech.2020.108318.
  52. Zhang, L., He, M. and Shao, S. (2020), "Machine learning for halide perovskite materials", Nano Energy, 78, 105380. https://doi.org/10.1016/j.nanoen.2020.105380.