DOI QR코드

DOI QR Code

Analysis of Conductivity Variation and Conduction Mechanism in Bulk NiO Based on Sintering Conditions

  • Ju-Hyeon Lee (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Tae-Soo Yeo (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Wook Jo (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2023.05.31
  • Accepted : 2023.06.09
  • Published : 2023.07.01

Abstract

Multilayer Ceramic Capacitors (MLCCs) are essential passive components in the electronics industry, known for their high capacitance due to the multilayer structure comprising inner electrodes and dielectric layers. Nickel electrodes are commonly used in MLCCs as the inner electrodes, and to prevent oxidation during the co-firing of the dielectric layers with nickel electrodes, reducing atmosphere is required. However, reducing atmosphere sintering can also induce a reduction of the dielectric, necessitating precise control of oxygen partial pressure. To explore the possibility of using oxide electrodes that do not require reducing atmosphere sintering, we analyze the electrical properties of nickel oxide (NiO) as a potential candidate. As a preliminary study on its use as an alternative inner electrode, the correlation between microstructure and electrical properties of bulk NiO under different sintering conditions was investigated to gain insights into the conduction mechanisms of the material.

Keywords

Acknowledgement

This research was supported by the Creative Materials Dis covery Program (2020M3D1A2102915) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT.

References

  1. K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, and H. W. Jang, J. Mater. Chem. C, 7, 9782 (2019). [DOI: https://doi.org/10.1039/ c9tc02921d]
  2. I. Seo, H. W. Kang, and S. H. Han, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 103 (2022). [DOI: https://doi.org/ 10.4313/JKEM.2022.35.2.1]
  3. J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, and T. Nomura, J. Power Sources, 60, 199 (1996). [DOI: https://doi. org/10.1016/S0378-7753(96)80011-5]
  4. D.F.K. Hennings, J. Eur. Ceram. Soc., 21, 1637 (2001). [DOI: https://doi.org/10.1016/S0955-2219(01)00082-6]
  5. K. Albertsen, D. Hennings, and O. Steigelmann, J. Electroceram., 2, 193 (1998). [DOI: https://doi.org/10.1023/A:1009926916939]
  6. G. Y. Yang, G. D. Lian, E. C. Dickey, C. A. Randall, D. E. Barber, P. Pinceloup, M. A. Henderson, R. A. Hill, J. J. Beeson, and D. J. Skamser, J. Appl. Phys., 96, 7500 (2004). [DOI: https://doi.org/10.1063/1.1809268]
  7. Y. Iida, J. Am. Ceram. Soc., 41, 397 (1958). [DOI: https://doi. org/10.1111/j.1151-2916.1958.tb13511.x]
  8. A. Cho, C. S. Han, M. Kang, W. Choi, J. Lee, J. Jeon, S. Yu, Y. S. Jung, and Y. S. Cho, ACS Appl. Mater. Interfaces, 10, 16203 (2018). [DOI: https://doi.org/10.1021/acsami.8b02630]
  9. G. Y. Yang, E. C. Dickey, C. A. Randall, D. E. Barber, P. Pinceloup, M. A. Henderson, R. A. Hill, J. J. Beeson, and D. J. Skamser, J. Appl. Phys., 96, 7492 (2004). [DOI: https://doi.org/ 10.1063/1.1809267]
  10. A. Uthayakumar, A. Pandiyan, S. Mathiyalagan, A. K. Keshri, and S.B.K. Moorthy, J. Phys. Chem. C, 124, 5591 (2020). [DOI: https://doi.org/10.1021/acs.jpcc.0c00166]
  11. J. W. Liu, D. Y. Lu, X. Y. Yu, Q. L. Liu, Q. Tao, H. Change, and P. W. Zhu, Acta Metall. Sin. (Engl. Lett.), 30, 97 (2016). [DOI: https://doi.org/10.1007/s40195-016-0522-y]
  12. H. J. Van Daal and A. J. Bosman, Phys. Rev., 158, 726 (1967). [DOI: https://doi.org/10.1103/PhysRev.158.736]
  13. M. D. Irwin, D. B. Buchholz, A. W. Hains, R.P.H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci., 105, 2783 (2008). [DOI: https://doi.org/10.1073/pnas.0711990105]
  14. D. Y. Cho, S. J. Song, U. K. Kim, K. M. Kim, H. K. Lee, and C. S. Hwang, J. Mater. Chem. C, 1, 4334 (2013). [DOI: https://doi. org/10.1039/c3tc30687a]
  15. F. Jiang, W.C.H. Choy, X. Li, D. Zhang, and J. Cheng, Adv. Mater., 27, 2930 (2015). [DOI: https://doi.org/10.1002/adma. 201405391]
  16. R. Poulain, G. Lumbeeck, J. Hunka, J. Proost, H. Savolainen, H. Idrissi, D. Schryvers, N. Gauquelin, and A. Klein, ACS Appl. Electron. Mater., 4, 2718 (2022). [DOI: https://doi.org/10.1021/ acsaelm.2c00230