Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2023R1A2C1006588).
References
- S. Jardim, J. Antonio, and C. Mora. ' Graphical image region extraction with k-means clustering and watershed, Journal of Imaging, 8(6) (2022), 163.
- J. MacQueen. Some methods for classification and analysis of multivariate observations, University of California Press, Proceedings of 5th Berkeley Symposium on Math., Stat., and Prob, CA 1965.
- X. Zheng, Q. Lei, R. Yao, Y. Gong, and Q. Yin. Image segmentation based on adaptive k-means algorithm, EURASIP Journal on Image and Video Processing, (2018), 1-10.
- M. Schier, C. Reinders, and B. Rosenhahn. Constrained mean shift clustering, SIAM, Proceedings of the 2022 SIAM International Conference on Data Mining (SDM). Virginia, US 2022.
- K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Transactions on information theory, 21(1) (1975), 32-40. https://doi.org/10.1109/TIT.1975.1055330
- M. A. Carreira-Perpinan. A review of mean-shift algorithms for clustering, arXiv preprint arXiv:1503.00687, 2015.
- M. A. Carreira-Perpinan. Acceleration strategies for gaussian mean-shift image segmentation, IEEE, Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), NY 2006.
- X. Wang, B. Qian, and I. Davidson. On constrained spectral clustering and its applications, Data Mining and Knowledge Discovery, 28 (2014), 1-30. https://doi.org/10.1007/s10618-012-0291-9
- A. Kornilov, I. Safonov, and I. Yakimchuk. A review of watershed implementations for segmentation of volumetric images, Journal of Imaging, 8(5) (2022), 127.
- A. Kucharski and A. Fabijanska. ' Cnn-watershed: A watershed transform with predicted markers for corneal endothelium image segmentation, Biomedical Signal Processing and Control, 68 (2021), 102805.
- D. Khattab, H. M. Ebied, A. S. Hussein, and M. F. Tolba. Color image segmentation based on different color space models using automatic grabcut, The Scientific World Journal, 2014 (2014), 126025.
- B. Basavaprasad and R. S. Hegadi. Improved grabcut technique for segmentation of color image, Int. J. Comput. Appl, (2014).
- A. Ciobanu, M. Costin, and T. Barbu. Extraction of main colors from a color digital image, Proceedings of 10th International Multidisciplinary Scientific Geoconference SGEM 2010, Bulgaria 2010.
- P. Zhao and B.-C. Shin. Detection and counting of flowers based on digital images using computer vision and a concave point detection technique, Journal of Korean Society of Industrial and Applied Mathematics, 27(1) (2023), 37-55.
- M. Lalitha, M. Kiruthiga, and C. Loganathan. A survey on image segmentation through clustering algorithm, International Journal of Science and Research, 2(2) (2013), 348-358.
- A. Gulhane, P. L. Paikrao, and D. Chaudhari. A review of image data clustering techniques, International Journal of Soft Computing and Engineering, 2(1) (2012), 212-215.
- S. Naz, H. Majeed, and H. Irshad. Image segmentation using fuzzy clustering: A survey, IEEE, Proceedings of 2010 6th international conference on emerging technologies (ICET), Islamabad, Pakistan 2010.
- S. Patil, A. Naik, M. Sequeira, G. Naik, and J. Parab. An algorithm for pre-processing of areca nut for quality classification, Lecture Notes in Networks and Systems, Springer, Proceedings of Second International Conference on Image Processing and Capsule Networks: ICIPCN 2021, Bangkok, Thailand 2022.
- K. Hajdowska, S. Student, and D. Borys. Graph based method for cell segmentation and detection in live-cell fluorescence microscope imaging, Biomedical Signal Processing and Control, 71 (2022), 103071.
- P. Tejas and S. Padma. A hybrid segmentation technique for brain tumor detection in mri images, Lecture Notes in Networks and Systems, Springer, Proceedings of Second International Conference on Image Processing and Capsule Networks: ICIPCN 2021, Bangkok, Thailand 2022.
- O. Library. OpenCV: Open source computer vision library. https://opencv.org, 2000-2021.
- L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(06) (1991), 583-598. https://doi.org/10.1109/34.87344
- O. Cuisenaire and B. Macq. Fast euclidean distance transformation by propagation using multiple neighborhoods, Computer vision and Image understanding, 76(2) (1999), 163-172. https://doi.org/10.1006/cviu.1999.0783
- R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno. 2d euclidean distance transform algorithms: A comparative survey, ACM Computing Surveys (CSUR), 40(1) (2008), 1-44. https://doi.org/10.1145/1322432.1322434
- Z. Wand, Y. Liu, Z. Guan, Z. Zhang, and Z. Zhang. Watershed segmentation method for overlapped objects based on adaptive multiple euclidean distance transformation, Computer Knowledge and Technology, (003):018, 2022.
- F. Robert, P. Simon, W. Ashley, and W. Erik. Connected components labeling, https://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm, 2003.
- c. SciPy. scipy.ndimage.label. last edited on February 19, 2023 Version: 1.10.1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.label.html, 2023.
- J. R. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, and eigenvectors, The American Mathematical Monthly, 92(10) (1985), 711-717. https://doi.org/10.1080/00029890.1985.11971719
- iStockphoto LP. istock by getty images, https://www.istockphoto.com/kr/search/search-by-asset?assetid=961872668&assettype=image, 2023.
- F. Wikimedia. Elbow method (clustering), last edited on 22 February 2023. https://en.wikipedia.org/wiki/Elbow_method_(clustering), 2023.
- S. J. Devaraj. Emerging paradigms in transform-based medical image compression for telemedicine environment, Telemedicine technologies, Elsevier, (2019), 15-29.