DOI QR코드

DOI QR Code

Tension estimation method using natural frequencies for cable equipped with two dampers

  • Aiko Furukawa (Department of Urban Management, Graduate School of Engineering, Kyoto University) ;
  • Kenki Goda (Department of Urban Management, Graduate School of Engineering, Kyoto University) ;
  • Tomohiro Takeichi (Kobelco Wire Company, Ltd.)
  • Received : 2023.11.17
  • Accepted : 2023.12.20
  • Published : 2023.12.25

Abstract

In cable structure maintenance, particularly for cable-stayed bridges, cable safety assessment relies on estimating cable tension. Conventionally, in Japan, cable tension is estimated from the natural frequencies of the cable using the higher-order vibration method. In recent years, dampers have been installed on cables to reduce cable vibrations. Because the higher-order vibration method is a method for damper-free cables, the damper must be removed to measure the natural frequencies of a cable without a damper. However, cables on some cable-stayed bridges have two dampers: one on the girder side and another on the tower side. Notably, removing and reinstalling the damper on the tower side are considerably more time- and labor-intensive. This paper introduces a tension estimation method for cables with two dampers, using natural frequencies. The proposed method was validated through numerical simulation and experiment. In the numerical tests, without measurement error in the natural frequencies, the maximum estimation error among 100 models was 3.3%. With measurement error of 2%, the average estimation error was within 5%, with a maximum error of 9%. The proposed method has high accuracy because the higher-order vibration method for a damper-free cable still has an estimation error of 5%. The experimental verification emphasizes the importance of accurate damper modeling, highlighting potential discrepancies between existing damper design formula and actual damper behavior. By revising the damper formula, the proposed method achieved accurate cable tension estimation, with a maximum estimation error of approximately 10%.

Keywords

Acknowledgement

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

References

  1. Chen, C.C., Wu, W.H., Leu, M.R. and Lai, G. (2016), "Tension determination of stay cable or external tendon with complicated constraints using multiple vibration measurements", Measurement, 86, 182-195. https://doi.org/10.1016/j.measurement.2016.02.053.
  2. Chen, C.C., Wu, W.H., Leu, M.R. and Lai, G. (2018), "A novel tension estimation approach for elastic cables by elimination of complex boundary condition effects employing mode shape functions", Eng. Struct., 166, 152-166. https://doi.org/10.1016/j.engstruct.2018.03.070.
  3. Feng, Z., Wang, X. and Chen, Z. (2010), "A method of fundamental frequency hybrid recognition for cable tension measurement of cable-stayed bridges", Proceedings of the 8th IEEE International Conference on Control and Automation. https://doi.org/10.1109/ICCA.2010.5524186.
  4. Foti, F., Geuzaine, M. and Denoel, V. (2020), "On the identification of the axial force and bending stiffness of stay cables anchored to flexible supports", Appl. Math. Model., 92, 798-828. https://doi.org/10.1016/j.apm.2020.11.043.
  5. Furukawa, A., Hirose, K. and Kobayashi, R. (2021a), "Tension estimation method for cable with damper using natural frequencies", Front. Built Environ., 7(603857), https://doi.org/10.3389/fbuil.2021.603857.
  6. Furukawa, A., Hirose, K. and Kobayashi, R. (2022b), "Tension estimation method for cable with damper and its application to real cable-stayed bridge", (Eds., Wu, Z., Nagayama, T., Dang, J. and Astroza, R.) Experimental Vibration Analysis for Civil Engineering Structures. Lecture Notes in Civil Engineering, 224. https://doi-org.kyoto-u.idm.oclc.org/10.1007/978-3-030-93236-7_32
  7. Furukawa, A., Kozuru, K. and Kobayashi, R. (2022c), "Method for estimating tension of two Nielsen-Lohse bridge cables with intersection clamp connection and unknown boundary conditions", Front. Built Environ., 8(906871). https://doi.org/10.3389/fbuil.2022.993958.
  8. Furukawa, A., Suzuki, S. and Kobayashi, R. (2022d), "Tension estimation method for cable with damper using natural frequencies with uncertain modal order", Front. Built Environ., 8(812999). https://doi.org/10.3389/fbuil.2022.812999.
  9. Furukawa, A., Suzuki, S. and Kobayashi, R. (2022e), "Tension estimation method for cable with damper using natural frequencies and two-point mode shapes with uncertain modal order", Front. Built Environ., 8(906871). https://doi.org/10.3389/fbuil.2022.906871.
  10. Furukawa, A., Yamada, S. and Kobayashi, R. (2022f), "Tension estimation methods for two cables connected by an intersection clamp using natural frequencies", J. Civ. Struct. Health Monit., 12, 339-360. https://doi.org/10.1007/s13349-022-00548-6.
  11. Furukawa, A., Yamada, S. and Kobayashi, R. (2022g), "Tension estimation methods for Nielsen-Lohse bridges using out-of-plane and in-plane natural frequencies", Int. J. Geomate, 23(97), 1-11. https://doi.org/10.21660/2022.97.3235.
  12. Gan, Q., Huang, Y., Wang, R.O. and Rao, R. (2019), "Tension estimation of hangers with shock absorber in suspension bridge using finite element method", J. Vibroeng., 21(3), 587-601. https://doi.org/10.21595/jve.2018.20054.
  13. Hou, J., Li, C., Jankowski, L., Shi, Y., Su, L., Yu, S. and Geng, T. (2020), "Damage identification of suspender cables by adding virtual supports with the substructure isolation method", Struct. Control Health Monit., 28(3), e2677, https://doi.org/10.1002/stc.2677.
  14. Izzi, M., Caracogilia, L. and Noe, S. (2016), "Investigating the use of Targeted-Energy-Transfer devices for stay-cable vibration mitigation", Struct. Control Health Monit., 23, 315-332. https://doi.org/10.1002/stc.1772.
  15. Javanbakht, M., Cheng, S. and Ghrib, F. (2019), "Control-oriented model for the dynamic response of a damped cable", J. Sound Vib., 442, 249-267. https://doi.org/10.1016/j.jsv.2018.10.036.
  16. Jeong, S., Kim H., Lee, J. and Sim, S.H. (2020), "Automated wireless monitoring system for cable tension force using deep learning", Struct. Health Moni., 20(4), 1805-1821. https://doi.org/10.1177/1475921720935837.
  17. Kim, BH. and Park, T. (2007), "Estimation of cable tension force using the frequency-based system identification method", J. Sound Vib., 304, 660-676. https://doi.org/10.1016/j.jsv.2007.03.012.
  18. Krenk, S. (2000), "Vibration of a taut cable with an external damper", ASME, J. Appl. Mech., 67, 772-776. https://doi.org/10.1115/1.1322037.
  19. Lazar, I.F., Neild, S.A. and Wagg, D.J. (2016), "Vibration suppression of cables using tuned inerter dampers", Eng. Struct., 122, 62-71. https://doi.org/10.1016/j.engstruct.2016.04.017.
  20. Li, S., Wang, L., Wang, H., Shi, P., Lan, R., Wu, C. and Wang, X. (2021), "An accurate measurement method for tension force of short cable by additional mass block", Adv. Mater. Sci. Eng., 2021(6622628), https://doi.org/10.1155/2021/6622628.
  21. Liu G., Wang, X., Wang, X., Wan, Y. and Li, B. (2023), "Noncontact cable tension estimation using edge recognition technology based on convolutional network", Structures, 58(105337). https://doi-org.kyoto-u.idm.oclc.org/10.1016/j.istruc.2023.105337.
  22. Ma, L. (2017), "A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions", J. Sound Vib., 409, 65-80. https://doi.org/10.1016/j.jsv.2017.07.043.
  23. Ma, L., Xu, H., Munkhbaatar, T. and Li, S. (2021), "An accurate frequency-based method for identifying cable tension while considering environmental temperature variation", J. Sound Vib., 490(115693). https://doi.org/10.1016/j.jsv.2020.115693.
  24. MathWorks. (2024), MATLAB Documentation, MultiStart. https://jp.mathworks.com/help/gads/multistart.html. [Accessed: January 30, 2024].
  25. Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng., 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961).
  26. Shan, D., Zhou, X. and Khan, I. (2019), "Tension identification of suspenders with supplemental dampers for through and half-through arch bridges under construction", ASCE, J. Struct. Eng., 145(3), Paper ID 04018265. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002255.
  27. Shi, X. and Zhu, S. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib., 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042.
  28. Shinke, T., Hironaka, K., Zui, H. and Nishimura, H. (1980), "Practical formulas for estimation of cable tension by vibration method", J. Jpn Soc. Civil Engineers, 294, 25-32. (In Japanese) https://doi.org/10.2208/jscej1969.1980.294_25.
  29. Shinko Wire Company, Ltd. (2020), Tension measuring technique for outer cables. http://www.shinko-wire.co.jp/products/vibration.html. [Accessed: January 30, 2024]. (In Japanese)
  30. Tabatabai, H. and Mehrabi, B. (2000), "Design of mechanical viscous dampers for stay cables", J. Bridge Eng. ASCE, 5(2), 114-123. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(114).
  31. Thyagarajan, S.K., Schulz, M.J. and Pai, P.F. (1998), "Detecting structural damage using frequency response functions", J. Sound Vib., 210, 162-170. https://doi.org/10.1006/jsvi.1997.1308.
  32. Weber, F. and Distl, H. (2015), "Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers", Struct. Control Health Monit., 22(2), 237-254. https://doi.org/10.1002/stc.1671.
  33. Yamagiwa, I., Utsuno, H., Endo, K. and Sugii, K. (2000), "Identification of flexural rigidity and tension of one-dimensional structure by measuring eigenvalues in higher order", T. Jpn Soc. Mech. Engineers, 66(649), 2905-2911. (In Japanese). https://doi.org/10.1299/kikaic.66.2905.
  34. Yan, B., Chen, W., Dong, Y. and Jiang, X. (2020), "Tension force estimation of cables with two intermediate supports", Int. J. Struct. Stab. Dyn., 20(3), Paper ID 2050032, https://doi.org/10.1142/S0219455420500327.
  35. Yan, B., Chen., W., Yu, J. and Jiang, X. (2019), "Mode shape-aided tension force estimation of cable with arbitrary boundary conditions", J. Sound Vib., 440, 315-331. https://doi.org/10.1016/j.jsv.2018.10.018.
  36. Zarbaf, S.E.H.A.M., Norouzi, M., Allemang, R., Hunt, V. and Helmicki, A. (2017), "Stay cable tension estimation of cable-stayed bridges using genetic algorithm and particle swarm optimization", J. Bridge Eng., 22(10), Paper ID 05017008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001130.
  37. Zarbaf, S.E.H.A.M., Norouzi, M., Allemang, R., Hunt, V., Helmicki, A. and Venkatesh, C. (2018), "Vibration-based cable condition assessment: A novel application of neural networks", Eng. Struct., 177, 291-305. https://doi.org/10.1016/j.engstruct.2018.09.060.
  38. Zui, H., Sinke, T. and Namita, Y. (1996), "Practical formulas for estimation of cable tension by vibration method", J. Struct. Eng. ASCE, 122(6), 651-656. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(651).