DOI QR코드

DOI QR Code

Inhibition of Side Reactions Forming Dimers of Diols in the Selective Hydrogenation of Methacryl Aldehyde

메타아크릴 알데히드의 선택적 수소화에서 2가 알코올의 이합체 형성 부반응 억제효과

  • Kook-Seung Shin (Lotte Chemical R&D Center) ;
  • Mi-Sun Cha (Lotte Chemical R&D Center) ;
  • Kyoung-Ku Kang (Department of Chemical Engineering, Dong-Eui University) ;
  • Chang-Soo Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 신국승 (롯데케미칼 연구소) ;
  • 차미선 (롯데케미칼 연구소) ;
  • 강경구 (동의대학교 공과대학 화학공학과) ;
  • 이창수 (충남대학교 공과대학 응용화학공학과)
  • Received : 2023.05.14
  • Accepted : 2023.06.06
  • Published : 2023.06.30

Abstract

The homogeneous catalyst, Ru-MACHO-BH, selectively performs hydrogenation reactions only on the carbonyl group of α, β-unsaturated aldehyde compounds with extremely high reactivity and selectivity. However, the hydrogenation of α, β-unsaturated aldehydes involves a heterogeneous Diels-Alder reaction, resulting in the formation of significant amounts of byproducts, such as dimers. In this study, we used the Ru-MACHO-BH catalyst (Carbonyl hydrido (tetrahydroborato) [bis (2-diphenyl phosphino ethyl) amino] ruthenium(II)) to selectively hydrogenate the carbonyl group of a specific type of α, β-unsaturated aldehyde called methacryl aldehyde, leading to the synthesis of methallyl alcohol. Simultaneously, we applied diols to inhibit the formation of byproducts. The results demonstrate that monoethylene glycol can significantly reduce the formation of diols. Based on these results, we effectively suppressed the formation of dimers containing vinyl groups in methacryl aldehyde by using hydroquinone, which can efficiently inhibit the chemical interaction of vinyl groups. Consequently, the conversion rate of methacryl aldehyde was increased. Ultimately, by reducing the amount of the expensive homogeneous catalyst Ru-MACHO-BH to 1/10, we achieved a selectivity of over 90% and a yield of over 80% for the desired product, methallyl alcohol. These results provide a method to minimize yield reduction while reducing the usage of expensive catalysts, thereby improving cost-effectiveness. We expect that the reaction could be applied to various kinds of selective hydrogenation and has been successfully run on an industrial scale.

Ru-MACHO-BH 촉매는 α, β-불포화 알데히드 화합물들의 카르보닐기(carbonyl group)만을 선택적으로 수소화 반응을 수행할 수 있다. 그러나 α, β-불포화 알데히드의 수소화 반응은 불균일 딜즈-앨더 반응을 수반하여 부산물인 이합체를 다량 생성한다. 본 연구에서는 Ru-MACHO-BH (Carbonyl hydrido (tetrahydroborato) [bis (2-diphenyl phosphino ethyl) amino] ruthenium(II)) 촉매를 이용하여, α, β-불포화 알데히드의 한 종류인 메타아크릴 알데히드(methacryl aldehyde) 화합물의 카르보닐기만 선택적으로 수소화 반응을 시켜 메타아릴 알코올(methallyl alcohol)을 합성하며, 동시에 2가 알코올을 부반응 억제제로 적용하였다. 이 결과는 모노 에틸렌 글리콜(mono ethylene glycol)이 이합체의 생성을 현저히 저감 시킬 수 있음을 보여주고 있다. 이러한 결과를 바탕으로 비닐기의 화학적 상호작용을 효과적으로 억제할 수 있는 하이드로퀴논을 사용하여 메타아크릴 알데히드에 존재하는 비닐기의 이합체 형성을 효과적으로 억제할 수 있었으며, 결국 메타아크릴 알데히드의 전환율을 상승시킬 수 있었다. 최종적으로, 고가의 귀금속 균일촉매인 Ru-MACHO-BH의 투입량을 1/10로 줄인 상태에서 원하는 생성물인 메타아릴 알코올의 선택도는 약 90% 이상, 수율은 약 80% 이상을 확보할 수 있었다. 이 결과는 수율 감소를 최소화하는 동시에 고가의 촉매 사용량을 저감하여 경제성을 향상시킬 수 있는 방법을 찾을 수 있게 하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C3004936).

References

  1. Xiaocheng, L. and Tiefeng, W., "Highly Selective Catalysts for the Hydrogenation of Unsaturated Aldehydes: A Review," ACS Catal., 10, 2764-2790 (2020). https://doi.org/10.1021/acscatal.9b04331
  2. Hui, G., Yuchao, L., Cuncun, Z., Yanxia, Z., Xinpeng, G., Jinguo, H., Haofei, H., Ming, W., and Tingting, G., "Kinetics, mechanism, and simulation of hydrogen transfer reaction of α, β-unsaturated aldehydes to allylic alcohols," AlChE Journal, 7(68), 1-15 (2022).
  3. Shyam, L. and Thanapalan, M., "The chlor-alkali process: Work in Progress," Clean Techn Environ Policy, 16, 225-234 (2014). https://doi.org/10.1007/s10098-013-0630-6
  4. Jedidiah, C. and Aliyar M., "The chlor-alkali process: A review of history and pollution," Environmental Forensics, 17(3), 211-217 (2016). https://doi.org/10.1080/15275922.2016.1177755
  5. Ko, J., Jang, Y., Jun, H., Bae, H., Lee, J., and Choi, C., "Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds," Clean Technol., 28(4), 285-29 (2022)
  6. Masazumi, T., Kensuke, T., Yoshinao, N., and Keiichi, T., "Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation," Chem. Commun., 49, 7034-7036 (2013). https://doi.org/10.1039/c3cc41526k
  7. Sim, M., Lee, S., Kim, Y., Ku, H., Woo, J., Joshi R., and Jeon, J., "Scale-up Study of Heterogeneous Catalysts for Biodiesel Production from Nepalese Jatropha Oil," Clean Technol., 27(2), 198-204 (2021).
  8. Lee, S. H., Jeon, J. H., Kim, J. C., and Ha, K. S., "Development of the Highly Dispersed Palladium-Nickel Catalysts for Catalytic Partial Oxidation of Methane," Korean Chem. Eng. Res., 59(2), 269-275 (2021).
  9. Baek, S. H., Yoon, K. H., and Shin, C. H., "Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide," Korean Chem. Eng. Res., 60(1), 159-168 (2022).
  10. Zhaobin, H., Liangce, R., Jiang, W., Lei, Z., Zheng, W., and Kuiling, D., "Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO2 and Epoxides to Methanol and Diols," Angew. Chem. Int. Ed., 51, 13041-13045 (2012). https://doi.org/10.1002/anie.201207781
  11. Sudakar, P., Gunniya, G., and Sungho Y., "Direct Heterogenization of the Ru-Macho Catalyst for the Chemoselective Hydrogenation of α,β-Unsaturated Carbonyl Compounds," Inorg. Chem., 60, 6881-6888 (2021). https://doi.org/10.1021/acs.inorgchem.0c03681
  12. Faqiang, L., Iann, G., Maria, A., and Philippe, S., "Selectivity shifts in hydrogenation of cinnamaldehyde on electron-deficient ruthenium nanoparticles," C.R.Chemie, 21, 346-353 (2018). https://doi.org/10.1016/j.crci.2017.04.001
  13. Masazumi, T., Kensuke, T., Yoshinao, N., and Keiichi, T., "Selective Hydrogenation of Crotonaldehyde to Crotyl Alcohol over Metal Oxide Modified Ir Catalysts and Mechanistic Insight," ACS Catal., 6, 3600-3609 (2016). https://doi.org/10.1021/acscatal.6b00400
  14. Piyali, C., Arup, G., Monoj, S., and Tapas, C., "Barrierless Proton Transfer in the Weak C-H...O Hydrogen Bonded Methacrolein Dimer upon Nonresonant Multiphoton Ionization in the Gas Phase," J. Phys. Chem. A, 122, 5563-5573 (2018). https://doi.org/10.1021/acs.jpca.8b02597
  15. Barnard M., "Polymerization of methacrolein," U.S. Patent No. 2,993,878 (1956).
  16. Karpiak, N., Marshalok, H., Fedevich, M., Avdosieva, I., and Kovalskyi, Y., "Synthesis and biological activity of α-alkylacrolein dimers and their derivatives," Chemistry of Heterocyclic Compounds, 44(11), 1334-1338 (2008). https://doi.org/10.1007/s10593-009-0200-3
  17. Shin-ichi, M., Shintaro, S., Koji, T., and Masato, S., "Organocatalytic head-to-tail dimerization of methacrolein via conjugate addition of methanol: an alcohol activation mechanism proved by electrospray ionization mass spectrometry," Tetrahedron Lett., 52, 6835-6838 (2011). https://doi.org/10.1016/j.tetlet.2011.10.070
  18. An, J., Lee, C., and Jeon, J., "Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor," Clean Technol.,25(2), 101-106 (2019).
  19. Shin, K. S., Cha, M. S., and Lee, C. S., "Pretreatment for Improving Selective Hydrogenation Reaction of α, β-Unsaturated Aldehydes," Korean Chem. Eng. Res., 61(1), 168-174 (2023).
  20. Zhaobin, H., Liangce, R., Jiang, W., Lei, Z., Zheng, W., and Kuiling, D., "Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO2 and Epoxides to Methanol and Diols," Angew. Chem. Int. Ed., 51, 13041-13045 (2012). https://doi.org/10.1002/anie.201207781
  21. Shizuka, S., Yasuko, O., and Jun, K., "Effects of Alcoholic Solvents on Antiradical Abilities of Protocatechuic Acid and Its Alkyl Esters," Biosci. Biotechnol. Biochem., 68(6), 1221-1227 (2004). https://doi.org/10.1271/bbb.68.1221
  22. Corey, E. J., "Catalytic Enantioselective Diels-Alder Reactions: Methods, Mechanistic Fundamentals, Pathways, and Applications," Angew. Chem. Int. Ed., 41, 1650-1667 (2002). https://doi.org/10.1002/1521-3773(20020517)41:10<1650::AID-ANIE1650>3.0.CO;2-B
  23. Ronald, F., Zhihong, W., Haijun, J., Sandra, H., and Johannes, V., "Selective base-free transfer hydrogenation of α, β-unsaturated carbonyl compounds using i-PrOH or EtOH as hydrogen source," Chem.-Eur. J., 24(11), 2725-2734 (2018). https://doi.org/10.1002/chem.201705423
  24. Sean, C., Alen, H., and Robert, M., "Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes," Coord. Chem. Rev., 248, 2201-2237 (2004). https://doi.org/10.1016/j.ccr.2004.04.007
  25. Veronica, C., Rafael, E., Diego, L., Felipa, B., Antonio, R., Laura, A., Jesus, H., and Isabel, R., "Hydrogenation of α, β-Unsaturated Carbonyl Compounds over Covalently Heterogenized Ru(II) Diphosphine Complexes on AlPO4-Sepiolite Supports," Catalysts, 11, 289 (2011).
  26. Pozdeeva, N. and Denisov, E., "Mechanism of Hydroquinone Inhibited Oxidation of Acrylic Acid and Methyl Methacrylate," Kinet. Catal., 52(4), 506-512 (2011). https://doi.org/10.1134/S0023158411040136
  27. https://www.eastman.com/Literature_Center/D/D162.pdf (accessed Jun.2023).
  28. Mahoney, L., "Inhibition of Free-Radical Reactions. ii. 1. Kinetic Study of the Reaction of Peroxy Radicals with Hydroquinones and Hindered Phenols," J. Am. Chem. Soc., 88(13), 3035-3041 (1966). https://doi.org/10.1021/ja00965a026
  29. Runmin, H., Dan, L., Sisi, C., Jingang, Y., and Xinyu J., "A strategy for effective electrochemical detection of hydroquinone andcatechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived Ndoped porous carbon," Sens. Actuator B-Chem., 320, 128386 (2020).