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This paper studied the problem of determining the optimal inventory level to meet the customer service target level in a 
situation where the customer demand for each branch of a nationwide retailer is uncertain. To this end, ISR (In-Stock Ratio) 
was defined as a key management indicator (KPI) that can be used from the perspective of a nationwide retailer such as Samsung, 
LG, or Apple that sells goods at branches nationwide. An optimization model was established to allow the retailer to minimize 
the total amount of inventory held at each branch while meeting the customer service target level defined as the average ISR. 
This paper proves that there is always an optimal solution in the model and expresses the optimal solution in a generalized 
form using the Karush-Kuhn-Tucker condition regardless of the shape of the probability distribution of customer demand. In 
addition, this paper studied the case where customer demand follows a specific probability distribution such as a normal distribution, 
and an expression representing the optimal inventory level for this case was derived. 
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1. Introduction1)

The retail industry is currently facing a vastly different 
environment compared to before, primarily due to the con-
traction in consumption and economic recession caused by 
the COVID-19 pandemic. KPMG, one of the world's largest 
accounting firms, has predicted that polarization in the dis-
tribution industry will intensify due to the shrinking 
consumption. They have also stated that companies that have 
preemptively established an online shopping environment will 
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enjoy relatively special benefits.
Apparel specialty stores and department stores are experi-

encing a decline in sales due to the decrease in offline customers. 
However, the increase in online purchases due to COVID-19 
will accelerate the digital transformation of the retail industry. 
Consumers who previously did not purchase items online are 
now shopping online due to the pandemic.

To survive in this new retail environment, distribution com-
panies that have already entered the online market should 
further strengthen their online capabilities. Meanwhile, off-
line-based distribution companies should quickly establish an 
online platform and last-mile delivery system to secure online 
consumers [6].
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In addition to the challenges mentioned above, retailers 
must also address the fundamental problem of matching cus-
tomer demand in an agile and cost-efficient manner. To achieve 
efficient operations and gain a competitive edge against other 
retailers, there are numerous activities that retailers can 
undertake. These include inventory optimization, price dis-
counting, and enhanced collaboration with manufacturers 
through various collaboration schemes such as Collaborative 
Planning Forecasting and Replenishment (CPFR), Vendor 
Managed Inventory (VMI), and Customer Management 
Inventory (CMI), among others.

<Figure 1> The Standard CPFR Model

<Figure 1> displays the core dynamics of the CPFR 
(Collaborative Planning, Forecasting, and Replenishment) col-
laboration process between a manufacturer and a retailer [4]. 
In this process, the manufacturer possesses accurate supply 
information, while the retailer has accurate market sales trend 
information. The channel inventory that accumulates in their 
supply chain can only be minimized through the sharing of 
their supply and market sales information via CPFR. 

The fundamental philosophy for collaboration among supply 
chain partners, including retailers, suppliers, and distributors, 
is to assume that the entire supply chain can generate more 
profits when it is operated by a single centralized party. One 
of the most significant business hurdles in achieving maximum 
sales or market share is the frequent occurrence of product 
shortages during customers' shopping experiences. In this pa-
per, we will provide solutions on how to minimize product 
shortages and maximize product availability in meeting the 
dynamic customer demand in both online and offline shopping 
environments.

In today's era of digital transformation, customers have 
become increasingly impatient. With abundant other options 
just a click away, they seldom tolerate product shortages or 
backlogs. In fact, their expectations for shopping experiences, 
including brand recognition, impeccable product quality, at-
tractive pricing, delivery speed, and more, are persistently 
growing. Moreover, customers are placing more emphasis 
on accompanying after-sales services, even after their 
purchases. If a company wants to establish a good reputation, 
it must avoid frequent product shortages or low product avail-
ability for their customers.

The existing body of research closely aligned with our 
study can be classified into three main groups. In the first 
group, researchers approach the problem by framing it as 
an inventory management issue, focusing on determining the 
optimal inventory levels for retailers faced with stochastic 
demand, stochastic supply, or both sources of uncertainty. 
These studies aim to find the optimal solution that maximizes 
(or minimizes) the retailer's overall profit (or total cost) by 
striking an optimal balance between shortages and surpluses. 
One prominent model within this category is the newsvendor 
model, which has gained significant recognition. For a detailed 
analysis of the newsvendor model, interested readers can refer 
to [5, 7]. 

The second category of studies focuses on the optimization 
of shelf space, aiming to determine the optimal positioning 
of each product to maximize total sales. Moreover, marketing 
research has revealed that customers make their final purchas-
ing decisions at the point of purchase, simultaneously (for 
example, refer [8]). Additionally, Bae et al. [1] found that, 
with the exception of relatively short time periods, buyers 
of a particular brand tend to purchase other brands more fre-
quently than their preferred brand. This suggests that customers' 
product choices may be influenced by in-store factors, including 
the allocation of shelf space. According to Yang and Chen 
[8], retailers can attract a greater number of customers, reduce 
instances of stock-outs, and enhance the financial performance 
of their stores through well-designed shelf space allocation.

The third category of research endeavors involves the devel-
opment of Key Performance Indicators (KPIs) aimed at quanti-
fying product availability within a defined time frame, either 
for a specific product or a group of products. However, it 
is important to acknowledge that in practice, the precise defi-
nition of such KPIs may prove challenging due to the need 
for suitable assumptions that facilitate the simplification of 
the intricate dynamics inherent to the market. For a compre-
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hensive exploration of metrics within the domain of supply 
chain management, it is recommended to consult [3], wherein 
the authors introduce three fundamental dimensions—service, 
assets, and speed—as essential components of supply chain 
metrics. Furthermore, the authors emphasize the importance 
of incorporating at least one performance measure for each 
of these three key dimensions within every supply chain.

In our prior publication [2], we introduced a novel Key 
Performance Indicator (KPI) for product availability known 
as the In-Stock Ratio (ISR), within the context of a simplified 
single product setting. The ISR is computed as the percentage 
of stores that possess more than one sellable product in stock. 
As depicted in <Figure 2> of Han and Kim [2], the ISR 
emerges as a suitable inventory metric for retailers operating 
in multiple countries, or those with a wide network of offline 
stores or online distribution channels within a particular nation

This paper aims to expand upon our prior findings by inves-
tigating a multi-product environment, in contrast to the sim-
plistic single product setting employed in previous research. 
The current study introduces an optimization model designed 
to minimize the cumulative inventory across all individual 
stores of the retailer, while concurrently ensuring that each 
store maintains a product availability level (referred to as ISR) 
surpassing a predetermined target threshold denoted as T.

The subsequent sections of this paper are structured as 
follows: Section 2 presents a comprehensive description of 
the mathematical model employed to maximize the product 
quantity constraint, accompanied by an exposition of the opti-
mality conditions. In Section 3, a concise yet illustrative exam-
ple is provided to demonstrate the practical application of 
the proposed model. Finally, Section 4 encapsulates the key 
contributions of this study and deliberates on potential avenues 
for future research.

2. Mathematical Model

This study focuses on the context of nationwide retailers, 
such as Samsung, LG, and Apple, which operate retail stores 
on a global or national scale. It is assumed that these retailers 
receive products exclusively through their central warehouse 
on a weekly basis. Furthermore, each individual store faces 
its own unique random weekly demand, characterized by a 
cumulative distribution function and probability density 
function. To enhance the tractability of the problem, the follow-
ing assumptions are made: the inventory management cycle 

for the retailer is conducted on a weekly basis, and the In-Stock 
Ratio (ISR) is adopted as the performance measure for the 
retailer's inventory operations. The ISR represents the percent-
age of stores that possess available products on their shelves 
at the conclusion of each week.

Notation:
∙M: Number of product types (j = 1, ..., M)
∙N: Total number of stores (i = 1, ..., N)
∙Xij: Initial inventory level of product j at store i at the 

beginning of the operational period
∙Dij: Demand for product j at store i during the operational 

period (we assume Dij=Dj~iid N(, ) for all j)
∙Fij: Probability distribution of the demand for product 

j at store i during the operational period
∙: Target ISR level for product j at store i during the 

operational period

Let Iij(xij) be the indicate variable taking value ‘1’ only
when there exists any product j on the shelf in store i 

at the end of each week where xij represents the initial inventory 
level, then

 




  

This means that E(Iij(xij)) equals to the probability for the 
initial inventory xij to cover the store i’s weekly demand 
for product j, that is demand fill-rate of the product j in 
the store I. 

<Figure 2> Product-Store Matrix 

To describe the entire supply chain, we need total of MN 
initial inventory values as shown in <Figure 2> , then we 

can define ISR for each product j as  
  





 , 

and, the expected value of ISR is calculated as follows:

 
  





 (1)
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Now the problem is to minimize each retailer’s initial in-
ventory level while meeting the desired expected ISR level 
for each product kind. One of the most important mission 
of the central distribution centers for an enterprise is to effec-
tively distribute products to the stores to meet weekly demands. 
Here, the optimal level of initial inventory for each product 
at each store will be the necessary input to accomplish the 
mission. In order words, if the optimal inventory level is 
X* = (X11*X21*, ⋯, XNM*) and the current inventory level 
is, Xcur = (X11, ⋯, XNM) then the central distribution centers 
need to deliver (Xij*-Xij) units to the retail store i and hold 
∑(Xij*-Xij) units to meet the desired expected target ISR 
level.

This problem can be represented as the following model,
minimizing the sum of the initial inventory level for the 

entire retail stores while the expected value of ISR is kept
above the pre-determined target level.

 Model 1: min∑∑Xij (2)
        s.t. E[ISR(j)]≥    for j=1, ⋯, M
                Xij ≥ E[Dij] for i=1, ⋯, N

The inclusion of the second constraint in this model is 
motivated by the common practice among retailers of maintain-
ing an initial inventory level that meets or exceeds the expected 
weekly demands. This formulation exhibits similarities with 
the well-known knapsack problem, which is renowned for 
its computational complexity. Additionally, solving the prob-
lem explicitly poses challenges due to the expected value 
of ISR generally being a nonlinear function of X. Consequently, 
a proposed method to address the problem within a relaxed 
environment will be presented in the subsequent section.

3. Calculation of Optimal Inventory Level

As discussed in Section 2, Model 1 presents a challenging 
integer nonlinear programming problem that is inherently diffi-
cult to solve directly. To render the problem more manageable, 
we make the assumption that the functions Fij(x) and fij(x) 
are continuous with respect to both x and xij, allowing them 
to take real nonnegative values. The significance of the integer 
constraint becomes more pronounced when the product demand 
at each retailer is scarce. However, in cases where the product 
demand at each retailer is relatively substantial (e.g., exceeding 
100), the integer constraint can be reasonably disregarded.

Given that Model 1 is formulated as a nonlinear program-
ming problem, the optimality conditions can be derived by 
employing the Karush-Kuhn-Tucker (KKT) conditions. To 
solve the optimization problem using the KKT conditions, 
let's introduce Lagrange multipliers for each constraint. Denote 
the Lagrange multipliers as    ⋯  , for the con-
straints (1/N)E[ISR(j)] >= , for j=1, ⋯, M and as , 
, ⋯,  for the remaining constraints with the form of 
Xij ≥ E[Dij] in Model1.

The Lagrangian function for the optimization problem is 
given by:

L = ∑∑Xij + [(1/N)E[ISR(1)] - ] + [(1/N)E[ISR(2)]
- ] +⋯+[(1/N)E[ISR(M)] - ] 
+(X11 - E[D11])+⋯+(XNM -E[DNM)

To apply the KKT conditions, we need to differentiate 
the Lagrangian with respect to each decision variable (X11, 
X21, ⋯, XNM) and set the derivatives equal to zero. Additionally, 
we need to consider the complementary slackness conditions 
for the inequality constraints.

Differentiating the Lagrangian function with respect to Xij:
∂L/∂Xij = 1 +  * (1/N) * fij(Xij) * fij'(Xij) +  

= 0, for all, i, j.

Now, let's consider the complementary slackness conditions 
for the inequality constraints:

 * [(1/N) * ∑fi1(Xi1) - ] = 0 
 * [(1/N) * ∑fi2(Xi2) - ] = 0

 * [(1/N) * ∑fiM(XiM) - ] = 0
 * (X11 - E[D11]) = 0
 * (X21 - E[D21]) = 0

* (XNM - E[DNM]) = 0

Finally, we have the constraints:
(1/N) * E[ISR(j)] >= , for j=1,⋯,M
(1/2) * f1(X12) + (1/2) * f2(X22) >= 0.95
Xij ≥ E[Dij] for all i, j.

Solving these equations and inequalities simultaneously will 
yield the optimal values for X11, X21, X12, ⋯, XNM.
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Summarizing all above equations leads to as follows:

     ∀ (3)

  


     ∀  (4)

  ≤   ∀ (5)
  ≤   ∀ (6)

The Lagrangian multipliers corresponds to the sensitivity 
of the product amount with respect to changes in the expected 
value of ISR(j). Additionally, since the objective function 
is linear and the feasible region, determined by the two con-
straints, forms a convex set due to Fij(x) being a non-decreasing 
function, it can be ensured that any solution satisfying the 
optimality conditions is a global optimal solution to our 
problem. Utilizing the optimality condition presented in equa-
tion (3), we deduce that  can be either 0 or E[ISR(j)] = 
.

If =0, it implies that Xij = E(Dij) for all i, j according 
to equation (4). Therefore, if E[ISR(j)] is greater than , 
the optimal value is Xij*=E(Dij) for all i and j. Conversely, 
if  cannot be zero, indicating that Fij(E(Dij))<. In this 
case, the optimal value is Xij*>E(Dij).

When  ≠ 0, we have E[ISR(j)]≥ . As E[ISR(j)] is 
equivalent to F(x), we can determine X* by solving the equation 
X* = F-1(). Moreover, the corresponding value of * can 
be calculated using equation (4) if Xij≠E(D). Specifically, 
=N/fij(x*).

In this paper, we focus exclusively on the scenario where 
the weekly demand follows a normal distribution with a mean 
of μj and a standard deviation of . Any normal distribution 
function is a decreasing function in [ ∞], and this property 
makes sure that the feasible region of our problem is convex. 
Since the objective function is a linear function, we can guaran-
tee that the solution driven by optimality conditions is the 
global optimum.

Though it is not easy to calculate　Xij* and *, *　from 
the set of equations (2) through (6) explicitly, To solve the 
problem numerically, we can use the SciPy optimization library 
in Python as illustrated in the following example.

Example 3.1 : We consider an illustrative case with two
retail stores with two kinds of product in <Table 1>. The 

demand for product j of each retail store i is normally distributed 
with mean  and standard deviation . In addition,  and 
 are assumed as shown in <Table 1>. 

Store
product

1 2

1 D11~N(11, 11) D12~N(12, 12)
2 D21~N(21, 21) D22~N(22, 22)

  = 0.95   = 0.95

where 11=200, 21=150, 12=100, 22=30
11=20, 21=15, 12=10, 22=5

<Table 1> Sample Data

To solve the optimization problem using the KKT conditions, 
let's introduce Lagrange multipliers for each constraint. Denote 
the Lagrange multipliers as   for the constraints 
(1/2)(F1(X11) + F2(X21)) >= 0.95, (1/2)(F1(X12) + F2(X22)) 
>= 0.95. And denote as    , and  for the remaining 
constraints X11 >= 100, X21 >= 50, X12 >= 100, and X22 
>= 50, respectively.

The Lagrangian function for the optimization problem is 
given by:

L = X11 + X21 + X12 + X22 + λ1[(1/2)(F1(X11) + F2(X21)) 
- 0.95] + λ2[(1/2)(F1(X12) + F2(X22)) - 0.95] + β11(X11 - 100) 
+ β21(X21 - 50) + β12(X12 - 100) + β22(X22 - 50)

To apply the KKT conditions, we need to differentiate 
the Lagrangian with respect to each decision variable (X11, 
X21, X12, X22) and set the derivatives equal to zero. Additionally, 
we need to consider the complementary slackness conditions 
for the inequality constraints.

Differentiating the Lagrangian with respect to X11:

∂L/∂X11 = 1 +  * (1/2) * f1(X11) * f1'(X11) + 11 = 0

Differentiating the Lagrangian with respect to X21:

∂L/∂X21 = 1 +  * (1/2) * f2(X21) * f2'(X21) +21 = 0

Differentiating the Lagrangian with respect to X12:

∂L/∂X12 = 1 +  * (1/2) * f1(X12) * f1'(X12) + 12 = 0

Differentiating the Lagrangian with respect to X22:

∂L/∂X22 = 1 +  * (1/2) * f2(X22) * f2'(X22) + 22 = 0

Now, let's consider the complementary slackness conditions 
for the inequality constraints:
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 * [(1/2) * f1(X11) + (1/2) * f2(X21) - 0.95] = 0
 * [(1/2) * f1(X12) + (1/2) * f2(X22) - 0.95] = 0

11 * (X11 - 100) = 0
21 * (X21 - 50) = 0
12 * (X12 - 100) = 0
22 * (X22 - 50) = 0

Finally, we have the constraints:

(1/2) * f1(X11) + (1/2) * f2(X21) >= 0.95
(1/2) * f1(X12) + (1/2) * f2(X22) >= 0.95

X11 >= 100
X21 >= 50
X12 >= 100
X22 >= 50

We used the SciPy optimization library in Python. In the 
Python code we defined the objective function as the sum 
of the decision variables X11, X21, X12, and X22. The constraints 
are defined using the cumulative distribution functions (CDFs) 
of the normal distributions, which are calculated using norm.cdf 
from the scipy.stats module.

The initial guess for the decision variables is set to [0, 
0, 0, 0], and the bounds for the decision variables are defined 
to satisfy the constraints. The constraints are defined as inequal-
ity constraints. Solving these equations and inequalities simul-
taneously yielded the optimal values for X11, X21, X12, and 
X22, X*=[X11*, X21*, X12*, X22*] = [231.3, 176.1, 114.7, 59.4]. 
The objective function value at the optimal solution is 581.5 
and this optimal solution was reached pretty fast after 4 iter-
ations as shown in <Figure 3>. 

4. Conclusion

In this paper, we extended our previous research on determin-
ing the optimal inventory level for a single product in a retail 
store to the multi-product setting. Our goal was to address 
the challenges faced by retailers in managing inventory levels 
for multiple products while ensuring a desired level of customer 
service.

To tackle this problem, we introduced the concept of the 
Inventory Stock Ratio (ISR) as a metric to measure product 
availability in a multi-product context. We developed an opti-
mization model that aimed to minimize the total inventory 
level across all product types in each store, while ensuring 

that the expected ISR for each product met or exceeded a 
specified threshold.

<Figure 3> Iterations vs. Objective Function Value

Through our analysis, we demonstrated the existence of 
an optimal solution for this problem and derived a generic 
expression for the optimal inventory level that is applicable 
to any specific customer demand distribution. This expression 
allows retailers to determine the optimal inventory levels for 
multiple products in their stores without relying on the exact 
form of the demand distribution.

Moreover, we extended our investigation to consider cases 
where the customer demand for each product at the re-
tailer-owned stores follows a known probability distribution, 
such as the normal distribution. In these scenarios, we derived 
a general expression for the optimal inventory level, in-
corporating the distribution parameters of the demand 
distribution.

While our study focused on the normal distribution as a 
representative example, future research could explore alter-
native probability distributions to capture a wider range of 
demand patterns in retail settings. Investigating different de-
mand distributions would provide valuable insights into the 
robustness and adaptability of the proposed inventory manage-
ment approach.

In conclusion, our research contributes to the understanding 
of optimal inventory management in a multi-product setting, 
considering stochastic demand and customer service levels. 
The developed optimization model, along with the concept 
of the Inventory Stock Ratio, offers a valuable framework 
for retailers to make informed decisions about inventory alloca-
tion and achieve efficient inventory management across multi-
ple product types.
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