References
- Achache, H. and Benzerdjeb, A. (2017), "Delamination of a composite laminated under monotonic loading", Int. J. Theor. Appl. Mech., 2, 119.
- Adams, R.D. and Cawley, P.D.R.D. (1988), "A review of defect types and nondestructive testing techniques for composites and bonded joints", NDT Int., 21(4), 208-222. https://doi.org/10.1016/0308-9126(88)90333-1.
- Al-Azzawi, A.S., Kawashita, L.F. and Featherston, C.A. (2019), "A modified cohesive zone model for fatigue delamination in adhesive joints: Numerical and experimental investigations", Compos. Struct., 225, 111114. https://doi.org/10.1016/j.compstruct.2019.111114.
- Baldi, A., Airoldi, A., Crespi, M., Iavarone, P. and Bettini, P. (2011), "Modelling competitive delamination and debonding phenomena in composite T-Joints", Procedia Eng., 10, 3483-3489. https://doi.org/10.1016/j.proeng.2011.04.574.
- Banea, M.D. and da Silva, L.F. (2009), "Adhesively bonded joints in composite materials: an overview", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 223(1), 1-18. https://doi.org/10.1243/14644207JMDA219.
- Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. https://doi.org/10.12989/scs.2019.31.2.113.
- Budhe, S., Banea, M.D., De Barros, S. and Da Silva, L.F.M. (2017), "An updated review of adhesively bonded joints in composite materials", Int. J. Adhes. Adhesiv., 72, 30-42. https://doi.org/10.1016/j.ijadhadh.2016.10.010.
- Cope, R.D. and Pipes, R.B. (1982), "Design of the composite sparwingskin joint", Compos., 13(1), 47-53. https://doi.org/10.1016/0010-4361(82)90170-7.
- Esmaili, A. and Taheri-Behrooz, F. (2020), "Effect of cohesive zone length on the delamination growth of the composite laminates under cyclic loading", Eng. Fract. Mech., 237, 107246. https://doi.org/10.1016/j.engfracmech.2020.107246.
- Fasel, T.R. and Todd, M.D. (2010), "An adhesive bond state classification method for a composite skin-to-spar joint using chaotic insonification", J. Sound Vib., 329(15), 3218-3232. https://doi.org/10.1016/j.jsv.2010.02.009.
- Gillespie Jr, J.W. and Pipes, R.B. (1978), "Behavior of integral composite joints-finite element and experimental evaluation 1", J. Compos. Mater., 12(4), 408-421. https://doi.org/10.1177/002199837801200406.
- Gradin, R. and Fracture, LE. (1986), "Analysis of adhesive-bonded joints in FRP composite laminates and tubes", Doctoral Dissertation, IIT, Kharagpur.
- Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071.
- Hosseini, M.R., Taheri-Behrooz, F. and Salamat-talab, M. (2019), "Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface", Polym. Test., 78, 105943. https://doi.org/10.1016/j.polymertesting.2019.105943.
- Hosseini, M.R., Taheri-Behrooz, F. and Salamat-Talab, M. (2020), "Mode II interlaminar fracture toughness of woven E-glass/epoxy composites in the presence of mat interleaves", Int. J. Adhes. Adhesiv., 98, 102523. https://doi.org/10.1016/j.ijadhadh.2019.102523.
- Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24, 361-364. https://doi.org/10.1115/1.4011547.
- Jayatilake, I.N., Karunasena, W. and Lokuge, W. (2016), "Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations", Adv. Aircraft Spacecraft Sci., 3(1), 15. https://doi.org/10.12989/aas.2016.3.1.015.
- Jokinen, J. and Kanerva, M. (2019), "Simulation of delamination growth at CFRP-tungsten aerospace laminates using VCCT and CZM modelling techniques", Appl. Compos. Mater., 26(3), 709-721. https://doi.org/10.1007/s10443-018-9746-5.
- Jones, R.M. (1998), Mechanics of Composite Materials, CRC press.
- Jones, R., Kinloch, A.J., Michopoulos, J., Iliopoulos, A.P., Phan, N., Goel, K., ... & Peng, D. (2019), "Assessing failure and delamination growth in composites and bonded joints under variable amplitude loads", Proceedings of the Twenty-Second International Conference on Composite Materials (ICCM22), Melbourne, Australia, August.
- Kaci, D.A., Madani, K., Mokhtari, M., Feaugas, X. and Touzain, S. (2017), "Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate", Adv. Aircraft Spacecraft Sci., 4(6), 679. https://doi.org/10.12989/aas.2017.4.6.679.
- Lackman, L.M., O'brien, W.L. and Loyd, M.S. (1980), "Advanced composites integral structures meet the challenge of future aircraft systems", Fibrous Composites in Structural Design, Springer, Boston, MA.
- Lampani, L. (2011), "Finite element analysis of delamination of a composite component with the cohesive zone model technique", Eng. Comput., 28(1), 30-46. https://doi.org/10.1108/02644401111097000.
- Lanza Discalea, F., Matt, H., Bartoli, I., Coccia, S., Park, G. and Farrar, C. (2007), "Health monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber composite transducers", J. Intel. Mater. Syst. Struct., 18(4), 373-388. https://doi.org/10.1177/1045389X06066528.
- Li, D.H. (2016), "Delamination and transverse crack growth prediction for laminated composite plates and shells", Comput. Struct., 177, 39-55. https://doi.org/10.1016/j.compstruc.2016.07.011.
- Li, G., Chen, J.H., Yanishevsky, M. and Bellinger, N.C. (2012), "Static strength of a composite butt joint configuration with different attachments", Compos. Struct., 94(5), 1736-1744. https://doi.org/10.1016/j.compstruct.2011.12.008.
- Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Struct. Eng. Mech., 53(4), 767-780. https://doi.org/10.12989/sem.2015.54.4.767.
- Ma, X., Liu, H., Bian, K., Lu, J., Yang, Q. and Xiong, K. (2020), "A numerical and experimental study on the multiple fracture progression of CFRP T-joints under pull-off load", Int. Mech. Sci., 177, 105541. https://doi.org/10.1016/j.ijmecsci.2020.105541.
- Mohanty, J., Sahu, S.K. and Parhi, P.K. (2013), "Numerical and experimental study on buckling behaviour of multiple delaminated composite plates", Int. J. Struct. Integr., 4(2), 240-257. https://doi.org/10.1108/17579861311321717.
- Moshier, M.A. (2006), Ram Load Simulation of Wing Skin-Spar Joints: New Rate-dependent Cohesive Model, Rhamm Technologies LLC Bellbrook Oh.
- Mousavi, S.B. and Yazdi, A.A. (2019), "Aeroelastic behavior of nano-composite beam-plates with double delaminations", Steel Compos. Struct., 33(5), 653-661. https://doi.org/10.12989/scs.2019.33.5.653.
- Nimje, S.V. and Panigrahi, S.K. (2014), "Numerical simulation for stress and failure of functionally graded adhesively bonded tee joint of laminated FRP composite plates", Int. J. Adhes. Adhesiv., 48, 139-149. https://doi.org/10.1016/j.ijadhadh.2013.09.046.
- Panigrahi, S.K. and Pradhan, B. (2008a), "Delamination damage analyses of FRP composite spar wingskin joints with modified elliptical adhesive load coupler profile", Appl. Compos. Mater., 15(4), 189-205. https://doi.org/10.1007/s10443-008-9067-1.
- Panigrahi, S.K. and Pradhan, B. (2008b), "Development of load coupler profiles of spar wingskin joints with improved performance for integral structural construction of aircraft wings", J. Reinf. Plast. Compos., 28(6), 657-673. https://doi.org/10.1177/0731684407086594.
- Panigrahi, S.K. and Zhang, Y.X. (2011), "Investigation of damage growth in single lap joints of composite laminates", J. Adhes. Sci. Technol., 25(11), 1223-1244. https://doi.org/10.1163/016942410X537170.
- Qiao, P. and Wang, J. (2005), "Novel joint deformation models and their application to delamination fracture analysis", Compos. Sci. Technol., 65(11-12), 1826-1839. https://doi.org/10.1016/j.compscitech.2005.03.014.
- Raju, I.S., Crews Jr, J.H. and Aminpour, M.A. (1988), "Convergence of strain energy release rate components for edge-delaminated composite laminates", Eng. Fract. Mech., 30(3), 383-396. https://doi.org/10.1016/0013-7944(88)90196-8.
- Rakshe, S., Nimje, S.V. and Panigrahi, S.K. (2020), "Optimization of adhesively bonded spar-wingskin joints of laminated FRP composites subjected to pull-off load: A critical review", Rev. Adhes. Adhesiv., 8(1), 29-46. https://doi.org/10.1002/9781119846703.ch2.
- Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Eng. Fract. Mech., 9(4), 931-938. https://doi.org/10.1016/0013-7944(77)90013-3.
- Sabaghi, M., Taheri-Behrooz, F. and Salamat-Talab, M. (2022), "Critical strain energy release rate of woven carbon/epoxy composites subjected to thermal cyclic loading", Polym. Compos., 43(9), 6135-6149. https://doi.org/10.1002/pc.26919.
- Sun, L., Li, C., Tie, Y., Hou, Y. and Duan, Y. (2019), "Experimental and numerical investigations of adhesively bonded CFRP single-lap joints subjected to tensile loads", Int. J. Adhes. Adhesiv., 95, 102402. https://doi.org/10.1016/j.ijadhadh.2019.102402.
- Tay, T.E., Shen, F., Lee, K.H., Scaglione, A. and Di Sciuva, M. (1999), "Mesh design in finite element analysis of post-buckled delamination in composite laminates", Compos. Struct., 47(1-4), 603-611. https://doi.org/10.1016/S0263-8223(00)00033-7.
- Tserpes, K.I., Labeas, G., Papanikos, P. and Kermanidis, T. (2002), "Strength prediction of bolted joints in graphite/epoxy composite laminates", Compos. Part B: Eng., 33(7), 521-529. https://doi.org/10.1016/S1359-8368(02)00033-1.
- Wang, Y., Soutis, C., Hajdaei, A. and Hogg, P.J. (2015), "Finite element analysis of composite T-joints used in wind turbine blades", Plast. Rub. Compos., 44(3), 87-97. https://doi.org/10.1179/1743289814Y.0000000113.
- Xu, Y., Chen, D.M., Zhu, W., Li, G. and Chattopadhyay, A. (2019), "Delamination identification of laminated composite plates using measured mode shapes", Smart Struct. Syst., 23(2), 195-205. https://doi.org/10.12989/sss.2019.23.2.195.
- Ye, J., Yan, Y., Li, J., Hong, Y. and Tian, Z. (2018), "3D explicit finite element analysis of tensile failure behavior in adhesive-bonded composite single-lap joints", Compos. Struct., 201, 261-275. https://doi.org/10.1016/j.compstruct.2018.05.134.