DOI QR코드

DOI QR Code

Strain energy release rates in the curved spar wingskin joints with pre-embedded delaminations

  • P.K. Mishra (Department of Mechanical Engineering, Biju Patnaik University of Technology) ;
  • A.K. Pradhan (School of Mechanical Sciences, Indian Institute of Technology) ;
  • M.K. Pandit (School of Mechanical Sciences, Indian Institute of Technology) ;
  • S.K. Panda (Department of Mechanical Engineering, Biju Patnaik University of Technology)
  • Received : 2021.06.01
  • Accepted : 2023.05.22
  • Published : 2023.07.10

Abstract

Any pre-existed delamination defect present during manufacturing or induce during service loading conditions in the wingskin adherend invariably shows a greater loss of structural integrity of the spar wingskin joint (SWJ). In the present study, inter-laminar delamination propagation at the critical location of the SWJ has been carried out using contact and multi-point constraint finite elements available with commercial FE software (ANSYS APDL). Strain energy release rates (SERR) based on virtual crack closure technique have been computed for evaluation of the opening (Mode-I), sliding (Mode-II) and cross sliding (Mode-III) modes of delamination by sequential release of multi point constraint elements. The variations of different modes of SERR are observed to be significant by considering varied delamination lengths, material properties of adherends and radius of curvature of the SWJ panel. The SERR rates are seen to be much different at the two pre-embedded delamination ends. This shows dissimilar delamination propagation rates. The maximum is seen to occur in the delamination front in the unstiffened region of the wingskin. The curvature geometry and material anisotropy of SWJ adherends significantly influences the SERR values. Increase in the SERR values are observed with decrease in the radius of curvature of wingskin panel, keeping its width unchanged. SWJs made with flat FRP composite adherends have superior resistance to delamination damage propagation than curved composite laminated SWJ panels. SWJ made with Boron/Epoxy (B/E) material shows greater resistance to the delamination propagation.

Keywords

References

  1. Achache, H. and Benzerdjeb, A. (2017), "Delamination of a composite laminated under monotonic loading", Int. J. Theor. Appl. Mech., 2, 119.
  2. Adams, R.D. and Cawley, P.D.R.D. (1988), "A review of defect types and nondestructive testing techniques for composites and bonded joints", NDT Int., 21(4), 208-222. https://doi.org/10.1016/0308-9126(88)90333-1.
  3. Al-Azzawi, A.S., Kawashita, L.F. and Featherston, C.A. (2019), "A modified cohesive zone model for fatigue delamination in adhesive joints: Numerical and experimental investigations", Compos. Struct., 225, 111114. https://doi.org/10.1016/j.compstruct.2019.111114.
  4. Baldi, A., Airoldi, A., Crespi, M., Iavarone, P. and Bettini, P. (2011), "Modelling competitive delamination and debonding phenomena in composite T-Joints", Procedia Eng., 10, 3483-3489. https://doi.org/10.1016/j.proeng.2011.04.574.
  5. Banea, M.D. and da Silva, L.F. (2009), "Adhesively bonded joints in composite materials: an overview", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 223(1), 1-18. https://doi.org/10.1243/14644207JMDA219.
  6. Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. https://doi.org/10.12989/scs.2019.31.2.113.
  7. Budhe, S., Banea, M.D., De Barros, S. and Da Silva, L.F.M. (2017), "An updated review of adhesively bonded joints in composite materials", Int. J. Adhes. Adhesiv., 72, 30-42. https://doi.org/10.1016/j.ijadhadh.2016.10.010.
  8. Cope, R.D. and Pipes, R.B. (1982), "Design of the composite sparwingskin joint", Compos., 13(1), 47-53. https://doi.org/10.1016/0010-4361(82)90170-7.
  9. Esmaili, A. and Taheri-Behrooz, F. (2020), "Effect of cohesive zone length on the delamination growth of the composite laminates under cyclic loading", Eng. Fract. Mech., 237, 107246. https://doi.org/10.1016/j.engfracmech.2020.107246.
  10. Fasel, T.R. and Todd, M.D. (2010), "An adhesive bond state classification method for a composite skin-to-spar joint using chaotic insonification", J. Sound Vib., 329(15), 3218-3232. https://doi.org/10.1016/j.jsv.2010.02.009.
  11. Gillespie Jr, J.W. and Pipes, R.B. (1978), "Behavior of integral composite joints-finite element and experimental evaluation 1", J. Compos. Mater., 12(4), 408-421. https://doi.org/10.1177/002199837801200406.
  12. Gradin, R. and Fracture, LE. (1986), "Analysis of adhesive-bonded joints in FRP composite laminates and tubes", Doctoral Dissertation, IIT, Kharagpur.
  13. Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071.
  14. Hosseini, M.R., Taheri-Behrooz, F. and Salamat-talab, M. (2019), "Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface", Polym. Test., 78, 105943. https://doi.org/10.1016/j.polymertesting.2019.105943.
  15. Hosseini, M.R., Taheri-Behrooz, F. and Salamat-Talab, M. (2020), "Mode II interlaminar fracture toughness of woven E-glass/epoxy composites in the presence of mat interleaves", Int. J. Adhes. Adhesiv., 98, 102523. https://doi.org/10.1016/j.ijadhadh.2019.102523.
  16. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24, 361-364. https://doi.org/10.1115/1.4011547.
  17. Jayatilake, I.N., Karunasena, W. and Lokuge, W. (2016), "Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations", Adv. Aircraft Spacecraft Sci., 3(1), 15. https://doi.org/10.12989/aas.2016.3.1.015.
  18. Jokinen, J. and Kanerva, M. (2019), "Simulation of delamination growth at CFRP-tungsten aerospace laminates using VCCT and CZM modelling techniques", Appl. Compos. Mater., 26(3), 709-721. https://doi.org/10.1007/s10443-018-9746-5.
  19. Jones, R.M. (1998), Mechanics of Composite Materials, CRC press.
  20. Jones, R., Kinloch, A.J., Michopoulos, J., Iliopoulos, A.P., Phan, N., Goel, K., ... & Peng, D. (2019), "Assessing failure and delamination growth in composites and bonded joints under variable amplitude loads", Proceedings of the Twenty-Second International Conference on Composite Materials (ICCM22), Melbourne, Australia, August.
  21. Kaci, D.A., Madani, K., Mokhtari, M., Feaugas, X. and Touzain, S. (2017), "Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate", Adv. Aircraft Spacecraft Sci., 4(6), 679. https://doi.org/10.12989/aas.2017.4.6.679.
  22. Lackman, L.M., O'brien, W.L. and Loyd, M.S. (1980), "Advanced composites integral structures meet the challenge of future aircraft systems", Fibrous Composites in Structural Design, Springer, Boston, MA.
  23. Lampani, L. (2011), "Finite element analysis of delamination of a composite component with the cohesive zone model technique", Eng. Comput., 28(1), 30-46. https://doi.org/10.1108/02644401111097000.
  24. Lanza Discalea, F., Matt, H., Bartoli, I., Coccia, S., Park, G. and Farrar, C. (2007), "Health monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber composite transducers", J. Intel. Mater. Syst. Struct., 18(4), 373-388. https://doi.org/10.1177/1045389X06066528.
  25. Li, D.H. (2016), "Delamination and transverse crack growth prediction for laminated composite plates and shells", Comput. Struct., 177, 39-55. https://doi.org/10.1016/j.compstruc.2016.07.011.
  26. Li, G., Chen, J.H., Yanishevsky, M. and Bellinger, N.C. (2012), "Static strength of a composite butt joint configuration with different attachments", Compos. Struct., 94(5), 1736-1744. https://doi.org/10.1016/j.compstruct.2011.12.008.
  27. Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Struct. Eng. Mech., 53(4), 767-780. https://doi.org/10.12989/sem.2015.54.4.767.
  28. Ma, X., Liu, H., Bian, K., Lu, J., Yang, Q. and Xiong, K. (2020), "A numerical and experimental study on the multiple fracture progression of CFRP T-joints under pull-off load", Int. Mech. Sci., 177, 105541. https://doi.org/10.1016/j.ijmecsci.2020.105541.
  29. Mohanty, J., Sahu, S.K. and Parhi, P.K. (2013), "Numerical and experimental study on buckling behaviour of multiple delaminated composite plates", Int. J. Struct. Integr., 4(2), 240-257. https://doi.org/10.1108/17579861311321717.
  30. Moshier, M.A. (2006), Ram Load Simulation of Wing Skin-Spar Joints: New Rate-dependent Cohesive Model, Rhamm Technologies LLC Bellbrook Oh.
  31. Mousavi, S.B. and Yazdi, A.A. (2019), "Aeroelastic behavior of nano-composite beam-plates with double delaminations", Steel Compos. Struct., 33(5), 653-661. https://doi.org/10.12989/scs.2019.33.5.653.
  32. Nimje, S.V. and Panigrahi, S.K. (2014), "Numerical simulation for stress and failure of functionally graded adhesively bonded tee joint of laminated FRP composite plates", Int. J. Adhes. Adhesiv., 48, 139-149. https://doi.org/10.1016/j.ijadhadh.2013.09.046.
  33. Panigrahi, S.K. and Pradhan, B. (2008a), "Delamination damage analyses of FRP composite spar wingskin joints with modified elliptical adhesive load coupler profile", Appl. Compos. Mater., 15(4), 189-205. https://doi.org/10.1007/s10443-008-9067-1.
  34. Panigrahi, S.K. and Pradhan, B. (2008b), "Development of load coupler profiles of spar wingskin joints with improved performance for integral structural construction of aircraft wings", J. Reinf. Plast. Compos., 28(6), 657-673. https://doi.org/10.1177/0731684407086594.
  35. Panigrahi, S.K. and Zhang, Y.X. (2011), "Investigation of damage growth in single lap joints of composite laminates", J. Adhes. Sci. Technol., 25(11), 1223-1244. https://doi.org/10.1163/016942410X537170.
  36. Qiao, P. and Wang, J. (2005), "Novel joint deformation models and their application to delamination fracture analysis", Compos. Sci. Technol., 65(11-12), 1826-1839. https://doi.org/10.1016/j.compscitech.2005.03.014.
  37. Raju, I.S., Crews Jr, J.H. and Aminpour, M.A. (1988), "Convergence of strain energy release rate components for edge-delaminated composite laminates", Eng. Fract. Mech., 30(3), 383-396. https://doi.org/10.1016/0013-7944(88)90196-8.
  38. Rakshe, S., Nimje, S.V. and Panigrahi, S.K. (2020), "Optimization of adhesively bonded spar-wingskin joints of laminated FRP composites subjected to pull-off load: A critical review", Rev. Adhes. Adhesiv., 8(1), 29-46. https://doi.org/10.1002/9781119846703.ch2.
  39. Rybicki, E.F. and Kanninen, M.F. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Eng. Fract. Mech., 9(4), 931-938. https://doi.org/10.1016/0013-7944(77)90013-3.
  40. Sabaghi, M., Taheri-Behrooz, F. and Salamat-Talab, M. (2022), "Critical strain energy release rate of woven carbon/epoxy composites subjected to thermal cyclic loading", Polym. Compos., 43(9), 6135-6149. https://doi.org/10.1002/pc.26919.
  41. Sun, L., Li, C., Tie, Y., Hou, Y. and Duan, Y. (2019), "Experimental and numerical investigations of adhesively bonded CFRP single-lap joints subjected to tensile loads", Int. J. Adhes. Adhesiv., 95, 102402. https://doi.org/10.1016/j.ijadhadh.2019.102402.
  42. Tay, T.E., Shen, F., Lee, K.H., Scaglione, A. and Di Sciuva, M. (1999), "Mesh design in finite element analysis of post-buckled delamination in composite laminates", Compos. Struct., 47(1-4), 603-611. https://doi.org/10.1016/S0263-8223(00)00033-7.
  43. Tserpes, K.I., Labeas, G., Papanikos, P. and Kermanidis, T. (2002), "Strength prediction of bolted joints in graphite/epoxy composite laminates", Compos. Part B: Eng., 33(7), 521-529. https://doi.org/10.1016/S1359-8368(02)00033-1.
  44. Wang, Y., Soutis, C., Hajdaei, A. and Hogg, P.J. (2015), "Finite element analysis of composite T-joints used in wind turbine blades", Plast. Rub. Compos., 44(3), 87-97. https://doi.org/10.1179/1743289814Y.0000000113.
  45. Xu, Y., Chen, D.M., Zhu, W., Li, G. and Chattopadhyay, A. (2019), "Delamination identification of laminated composite plates using measured mode shapes", Smart Struct. Syst., 23(2), 195-205. https://doi.org/10.12989/sss.2019.23.2.195.
  46. Ye, J., Yan, Y., Li, J., Hong, Y. and Tian, Z. (2018), "3D explicit finite element analysis of tensile failure behavior in adhesive-bonded composite single-lap joints", Compos. Struct., 201, 261-275. https://doi.org/10.1016/j.compstruct.2018.05.134.