Acknowledgement
This research work was funded by Institutional Fund Projects (grant no. IFPIP: 206-135-1442). The authors gratefully acknowledge the technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.
References
- Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326, 277-289. https://doi.org/10.1016/j.jsv.2009.04.044
- Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231
- Ansari, R., Ashrafi, M.A., Pourashraf, T. and Sahmani, S. (2015), "Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory", Acta Astronaut., 109, 42-51. https://doi.org/https://doi.org/10.1016/j.actaastro.2014.12.015
- Arani, A.G. and Jalaei, M.H. (2017), "Investigation of the longitudinal magnetic field effect on dynamic response of viscoelastic graphene sheet based on sinusoidal shear deformation theory", Physica B, 506, 94-104. https://doi.org/10.1016/j.physb.2016.11.004
- Askari, M., Brusa, E. and Delprete, C. (2021), "On the vibration analysis of coupled transverse and shear piezoelectric functionally graded porous beams with higher-order theories", J. Strain Anal. Eng., 56, 29-49. https://doi.org/10.1177/0309324720922085
- Azartash, P., Khorsandijou, S.M. and Khorshidvand, A.R. (2021), "Enhanced geometrically-nonlinear poro-FG shear-deformable beams under moving load in discrete state-space", Austral. J. Mech. Eng., 1-28. https://doi.org/10.1080/14484846.2021.1914389
- Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D Nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277
- Boggarapu, V., Gujjala, R., Ojha, S., Acharya, S., Chowdary, S. and Kumar Gara, D. (2021), "State of the art in functionally graded materials", Compos. Struct., 262, 113596. https://doi.org/10.1016/j.compstruct.2021.113596
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025
- Chen, D., Zheng, S., Wang, Y., Yang, L. and Li, Z. (2020), "Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis", Eur. J. Mech. A Solids, 84, 104083. https://doi.org/10.1016/j.euromechsol.2020.104083
- Chinh, T.H., Tu, T.M., Duc, D.M. and Hung, T.Q. (2021), "Static flexural analysis of sandwich beam with functionally graded face sheets and porous core via point interpolation meshfree method based on polynomial basic function", Arch. Appl. Mech., 91, 933-947. https://doi.org/10.1007/s00419-020-01797-x
- Dang, V.H. and Do, Q.C. (2021), "Nonlinear vibration and stability of functionally graded porous microbeam under electrostatic actuation", Arch. Appl. Mech., 91, 2301-2329. https://doi.org/10.1007/s00419-021-01884-7
- Derikvand, M., Farhatnia, F. and Hodges, D.H. (2021), "Functionally graded thick sandwich beams with porous core: Buckling analysis via differential transform method", Mech. Based Des. Struct. Mach., 1-28. https://doi.org/10.1080/15397734.2021.1931309
- Doan, T.L., Le, P.B., Tran, T.T., Trai, V.K. and Pham, Q.H. (2021), "Free vibration analysis of functionally graded porous nanoplates with different shapes resting on elastic foundation", J. Appl. Comput. Mech., 7, 1593-1605. https://doi.org/10.22055/jacm.2021.36181.2807
- Ebrahimi, F., Dabbagh, A. and Taheri, M. (2021), "Vibration analysis of porous metal foam plates rested on viscoelastic substrate", Eng. Comput., 37(4), 3727-3739. https://doi.org/10.1007/s00366-020-01031-w.
- Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51, 223-249. https://doi.org/10.1007/s11012-015-0208-y
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016, 20. https://doi.org/10.1155/2016/9561504
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39. https://doi.org/10.12989/anr.2019.7.1.039
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51. https://doi.org/10.12989/anr.2016.4.1.051
- Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40, 1-10. https://doi.org/10.1007/s40430-018-1065-0
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solids-I", Int. J. Eng. Sci., 2, 189-203. https://doi.org/https://doi.org/10.1016/0020-7225(64)90004-7
- Esmaeilzadeh, M., Esmaeil Golmakani, M., Kadkhodayan, M., Amoozgar, M. and Bodaghi, M. (2021), "Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates", Adv. Nano Res., 10(2), 151-163. https://doi.org/10.12989/anr.2021.10.2.151
- Faroughi, S., Rahmani, A. and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model", Appl. Math. Modell., 80, 169-190. https://doi.org/10.1016/j.apm.2019.11.040
- Fryba, L. (1999), Vibration of Solids and Structures under Moving Loads, Thomas Telford Publishing. https://doi.org/10.1680/vosasuml.35393
- Gayen, D. (2022), "Analysis of temperature, displacement, and stress in shafts made of functionally graded materials with various grading laws", Adv. Eng. Mater., 24(5), 2101328. https://doi.org/10.1002/adem.202101328
- Gayen, D., Tiwari, R. and Chakraborty, D. (2019), "Static and dynamic analyses of cracked functionally graded structural components: A review", Compos. Part B Eng., 173, 106982. https://doi.org/10.1016/j.compositesb.2019.106982
- Gayen, D., Tiwari, R. and Chakraborty, D. (2021), "Thermo-Mechanical Analysis of a Rotor-Bearing System Having a Functionally Graded Shaft with Transverse Breathing Cracks", In Proceedings of the 6th National Symposium on Rotor Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-15-5701-98
- Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/anr.2021.11.4.405
- Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36, 293-305. https://doi.org/10.12989/scs.2020.36.3.293
- Giannopoulos, G.I., Kakavas, P.A. and Anifantis, N.K. (2008), "Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach", Comput. Mater. Sci., 41, 561-569. https://doi.org/https://doi.org/10.1016/j.commatsci.2007.05.016
- Huang, X.L. and Shen, H.S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solids Struct., 41, 2403-2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012
- Jalaei, M.H. and Arani, A.G. (2018), "Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation", Physica B, 530, 222-235. https://doi.org/10.1016/j.physb.2017.11.049
- Jalaei, M.H. and Civalek, O (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013
- Jalaei, M.H. and Thai, H.T. (2019), "Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory", Compos. Part B Eng., 175, 107164. https://doi.org/10.1016/j.compositesb.2019.107164
- Jankowski, P., Zur, K.K., Kim, J., Lim, C.W. and Reddy, J.N. (2021), "On the piezoelectric effect on stability of symmetric FGM porous nanobeams", Compos. Struct., 267. https://doi.org/10.1016/j.compstruct.2021.113880
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50, 256-267. https://doi.org/10.1016/J.IJENGSCI.2010.12.008
- Kiani, Y. (2017), "Thermal post-buckling of FG-CNT reinforced composite plates", Compos. Struct., 159, 299-306. https://doi.org/10.1016/j.compstruct.2016.09.084.
- Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46, 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
- Kraus, J. (1992), Electromagnetics, McGraw-Hill.
- Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107. https://doi.org/10.1016/j.ijengsci.2016.07.011
- Li, L., Pratihar, D.K., Chakrabarty, S. and Mishra, P.C. (2020), Advances in Materials and Manufacturing Engineering, 119(125), Springer. https://doi.org/10.1007/978-981-15-1307-7
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Liu, H., Liu, H. and Yang, J. (2018), "Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation", Compos. Part B Eng., 155, 244-256. https://doi.org/10.1016/j.compositesb.2018.08.042
- Merzouki, T., Ahmed, H.M.S., Bessaim, A., Haboussi, M., Dimitri, R. and Tornabene, F. (2021), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Math. Mech. Solids, 27(1), 66-92. https://doi.org/10.1177/10812865211011759
- Najafi, F., Shojaeefard, M.H. and Googarchin, H.S. (2017), "Nonlinear dynamic response of FGM beams with Winkler-Pasternak foundation subject to noncentral low velocity impact in thermal field", Compos. Struct., 167, 132-143. https://doi.org/https://doi.org/10.1016/j.compstruct.2017.01.063.
- Nikrad, S.F., Kanellopoulos, A., Bodaghi, M., Chen, Z.T. and Pourasghar, A. (2021), "Large deformation behavior of functionally graded porous curved beams in thermal environment", Arch. Appl. Mech., 91, 2255-2278. https://doi.org/10.1007/s00419-021-01882-9
- Oguamanam, D.C.D., Hansen, J.S. and Heppler, G.R. (1998), "Dynamic response of an overhead crane system", J. Sound Vib., 213, 889-906. https://doi.org/https://doi.org/10.1006/jsvi.1998.1564
- Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Eur. J. Mech. A Solids, 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001
- Penna, R., Feo, L. and Lovisi, G. (2021a), "Hygro-thermal bending behavior of porous FG nano-beams via local/nonlocal strain and stress gradient theories of elasticity", Compos. Struct., 263, 113627. https://doi.org/10.1016/j.compstruct.2021.113627
- Penna, R., Feo, L., Lovisi, G. and Fabbrocino, F. (2021b), "Hygro-thermal vibration of porous fg nano-beams based on local/ nonlocal stress gradient theory of elasticity", Nanomaterials, 11, 1-16. https://doi.org/10.3390/nano11040910
- Rahmani, A., Faroughi, S. and Friswell, M.I. (2020a), "The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory", Mech. Syst. Signal Pr., 144, 106854. https://doi.org/10.1016/j.ymssp.2020.106854
- Rahmani, F., Kamgar, R. and Rahgozar, R. (2020b), "Finite element analysis of functionally graded beams using different beam theories", Civil Eng. J., 6, 2086-2102. https://doi.org/10.28991/cej-2020-03091604
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21, 593-626. https://doi.org/10.1080/01495739808956165
- Salari, E., Sadough Vanini, S.A., Ashoori, A.R. and Akbarzadeh, A.H. (2020), "Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis", Int. J. Mech. Sci., 178, 105615. https://doi.org/10.1016/j.ijmecsci.2020.105615
- Saleh, B., Jiang, J., Fathi, R., Al-hababi, T., Xu, Q., Wang, L., Song, D. and Ma, A. (2020), "30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges", Compos. Part B Eng., 201, 108376. https://doi.org/10.1016/j.compositesb.2020.108376
- Shafiei, N. and Kazemi, M. (2017), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045
- She, G.L., Ren, Y.R. and Yan, K.M. (2019), "On snap-buckling of porous FG curved nanobeams", Acta Astronaut., 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010
- Sobhy, M. (2015), "Hygrothermal deformation of orthotropic nanoplates based on the state-space concept", Compos. Part B Eng., 79, 224-235. https://doi.org/10.1016/j.compositesb.2015.04.042
- Srinivas, S. and Rao, A.K. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solid Struct., 6, 1463-1481. https://doi.org/https://doi.org/10.1016/0020-7683(70)90076-4
- Talebizadehsardari, P., Salehipour, H., Shahgholian-Ghahfarokhi, D., Shahsavar, A. and Karimi, M. (2020), "Free vibration analysis of the macro-micro-nano plates and shells made of a material with functionally graded porosity: A closed-form solution", Mech. Based Des. Struct. Mach., 1-27. https://doi.org/10.1080/15397734.2020.1744002
- Touloukian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York, U.S.A.
- Wang, Y., Xie, K. and Fu, T. (2018), "Vibration analysis of functionally graded porous shear deformable tubes excited by moving distributed loads", Acta Astronaut., 151, 603-613. https://doi.org/https://doi.org/10.1016/j.actaastro.2018.06.003
- Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023
- Xu, X., Karami, B. and Shahsavari, D. (2021), "Time-dependent behavior of porous curved nanobeam", Int. J. Eng. Sci., 160. https://doi.org/10.1016/j.ijengsci.2021.103455
- Yayli, M.O. (2015), "Buckling analysis of a rotationally restrained single walled carbon nanotube", Acta Phys. Pol. A, 127(3), 678-683. https/doi.org/10.12693/APhysPolA.127.678
- Yayli, M.O. (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11(11), 741-745. https://doi.org/10.1049/mnl.2016.0257
- Yayli, M.O . (2018a), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13(7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181
- Yayli, M.O. (2018b), "Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints", Micro Nano Lett., 13(2), 202-206. https://doi.org/10.1049/mnl.2017.0463
- Yayli, M.O. (2018c), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751
- Yayli, M.O. (2019a), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428
- Yayli, M.O. (2019b), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4
- Yayli, M.O . (2020), "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries", Microsyst. Technol., 26(8), 2661-2671. https://doi.org/10.1007/s00542-020-04808-7