DOI QR코드

DOI QR Code

Propagating and evanescent waves in a functionally graded nanoplate based on nonlocal theory

  • Cancan Liu (School of Mechanical and Power Engineering, Henan Polytechnic University) ;
  • Jiangong Yu (School of Mechanical and Power Engineering, Henan Polytechnic University) ;
  • Bo Zhang (School of Mechanical and Power Engineering, Henan Polytechnic University) ;
  • Xiaoming Zhang (School of Mechanical and Power Engineering, Henan Polytechnic University) ;
  • Xianhui Wang (School of Mechanical and Power Engineering, Henan Polytechnic University)
  • Received : 2022.02.05
  • Accepted : 2022.07.08
  • Published : 2023.05.25

Abstract

The purpose of this paper is to present the analysis of propagating and evanescent waves in functionally graded (FG) nanoplates with the consideration of nonlocal effect. The analytical integration nonlocal stress expansion Legendre polynomial method is proposed to obtain complete dispersion curves in the complex domain. Unlike the traditional Legendre polynomial method that expanded the displacement, the presented polynomial method avoids employing the relationship between local stress and nonlocal stress to construct boundary conditions. In addition, the analytical expressions of numerical integrations are presented to improve the computational efficiency. The nonlocal effect, inhomogeneity of medium and their interactions on wave propagation are studied. It is found that the nonlocal effect and inhomogeneity of medium reduce the frequency bandwidth of complex evanescent Lamb waves, and make complex evanescent Lamb waves have a higher phase velocity at low attenuation. The occurrence of intersections of propagating Lamb wave in the nonlocal homogeneous plate needs to satisfy a smaller Poisson's ratio condition than that in the classical elastic theory. In addition, the inhomogeneity of medium enhances the nonlocal effect. The conclusions obtained can be applied to the design and dynamic response evaluation of composite nanostructures.

Keywords

Acknowledgement

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (No. 51975189 and No.12102131), the Project funded by China Postdoctoral Science Foundation under grant numbers 2021M701102.

References

  1. Ac Harya, D.P. and Mondal, A. (2002), "Propagation of Rayleigh surface waves with small wavelengths in nonlocal visco-elastic solids", Sadhana, 27(6), 605-612. https://doi.org/10.1007/BF02703353. 
  2. Ahmadi, I. (2021), "Vibration analysis of 2d-functionally graded nanobeams using the nonlocal theory and meshless method", Eng. Anal. Bound. Elem., 124(8), 142-154. https://doi.org/10.1016/j.enganabound.2020.12.010. 
  3. Amiri, A., Vesal, R., and Talebitooti, R. (2019), "Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model", Int. J. Mech. Sci., 156, 474-485. https://doi.org/10.1016/j.ijmecsci.2019.04.018. 
  4. Arefi, M. (2016). "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech-Engl., 37(3), 289-302. https://doi.org/10.1007/s10483-016-2039-6. 
  5. Asghari Ardalani, A.R., Amiri, A., Talebitooti, R., and Safizadeh, M.S. (2021), "On wave dispersion characteristics of fluid-conveying smart nanotubes considering surface elasticity and flexoelectricity approach", P. I. Mech. Eng. C. J. Mec., 235(18), 3506-3518. https://doi.org/10.1177/0954406220965611.
  6. Cao, X., Jiang, H., Ru, Y., and Shi, J. (2019), "Asymptotic solution and numerical simulation of lamb waves in functionally graded viscoelastic film", Materials, 12(2), 1-16. https://doi.org/10.3390/ma12020268 
  7. Chaht, F. L., Kaci, A., Houari, M., Tounsi, A. and Mahmoud, S. R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425 
  8. Cha, S.N., Seo, J.S., Kim, S.M., Kim, H.J., Park, Y.J., Kim, S.W. and Kim, J.M. (2010), "Sound-driven piezoelectric nanowire-based nanogenerators", Adv. Mater., 22(42), 4726-4730. https://doi.org/10.1002/adma.201001169. 
  9. Chong, K.P (2008), "Nano science and engineering in solid mechanics", Acta Mech. Solida Sin., 21(002), 95-103. https://doi.org/10.1007/s10338-008-0812-7 
  10. Ebrahimi, F., Barati, M.R., Dabbagh, A. (2018a), "Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects", Wave Random Complex, 28(2), 215-235. https://doi.org/10.1080/17455030.2017.1337281 
  11. Ebrahimi, F. and Haghi, P. (2018b), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., Int. J., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201 
  12. Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., 4(2), 85-111. https://doi.org/10.12989/anr.2016.4.2.085 
  13. Elayan, H., Shubair, R.M., Jornet, J.M. and Mittra, R. (2017), "Multi-layer intrabody terahertz wave propagation model for nanobiosensing applications", Nano Commun. Netw., 14(DEC.), 9-15. https://doi.org/10.1016/j.nancom.2017.08.005 
  14. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803. 
  15. Every, A.G. (2016), "Intersections of the Lamb mode dispersion curves of free isotropic plates", J. Acoust. Soc. Am., 139(4), 1793. http://doi.org/10.1121/1.4946771 
  16. Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001 
  17. Golub, M.V., Fomenko, S.I., Bui, T.Q., Zhang, C. and Wang, Y.S. (2012), "Transmission and band gaps of elastic SH waves in functionally graded periodic laminates", Int. J. Solids Struct., 49(2), 344-354. https://doi.org/10.1016/j.ijsolstr.2011.10.013 
  18. Gopalakrishnan S and Narendar S. (2013), Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer Science & Business Media, New York, U.S.A. 
  19. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., Int. J., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281 
  20. He, D., Shi, D., Wang, Q. and Ma, C. (2021), "Free vibration characteristics and wave propagation analysis in nonlocal functionally graded cylindrical nanoshell using wave-based method", J. Brazil Soc. Mech. Sci. Eng., 43(6), 292. https://doi.org/10.1007/s40430-021-03008-2 
  21. Hernandez, C.M., Murray, T.W. and Krishnaswamy, S. (2002), "Photoacoustic characterization of the mechanical properties of thin films", Appl. Phys. Lett., 80(4), 691-693. https://doi.org/10.1063/1.1434303 
  22. Jornet J M and Akyildiz I F. (2013), "Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks", IEEE J. Sel. Area. Comm., 31(12), 685-694. https://doi.org/10.1109/JSAC.2013.SUP2.1213001 
  23. Kaviani, F. and Mirdamadi, H.R. (2013), "Wave propagation analysis of carbon nano-tube conveying fluid including slip boundary condition and strain/inertial gradient theory", Comput. Struct., 116, 75-87. https://doi.org/10.1016/j.compstruc.2012.10.025 
  24. Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008 
  25. Kuznetsov S.V. (2019), "Cauchy formalism for Lamb waves in functionally graded plates", J. Vibr. Control., 25(6), 1227-1232. https://doi.org/10.1177/1077546318815376 
  26. Kuznetsov, S.V. (2021), "Lamb waves in stratified and functionally graded plates: Discrepancy, similarity, and convergence", Wave Random Complex, 31(6), 1540-1549. https://doi.org/10.1080/17455030.2019.1683257 
  27. Liu, C.C., Yu, J.G., Xu, W.J., Zhang, X.M. and Wang, X.H. (2021), "Dispersion characteristics of guided waves in functionally graded anisotropic micro/nano-plates based on the modified couple stress theory", Thin Wall Struct., 161, 107527. https://doi.org/10.1016/j.tws.2021.107527 
  28. Liu, C.C., Yu, J.G., Zhang, B., Wang, X.H., Zhang, X.M., and Zhang, H.D. (2022), "Complete guided wave in piezoelectric nanoplates: A nonlocal stress expansion polynomial method", Eur. J. Mech. A Solids, 94, 104588. https://doi.org/10.1016/j.euromechsol.2022.104588 
  29. Lu, P., He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solids Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036 
  30. Luat, D.T., Thom, D.V., Thanh, T.T., Phung, M. and Vinh, P.V. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055 
  31. Lyon, R.H. (1955), "Response of an elastic plate to localized driving forces", J. Acoust. Soc. Am., 27, 259-265. https://doi.org/10.1121/1.1907510 
  32. Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5 
  33. Mindlin, R.D. (1958), "Vibrations of an infinite elastic plate at its cutoff frequencies", Proceedings of the Third U.S. National Congress of Applied Mechanics, 225-226. 
  34. Mindlin, R.D., Medick, M.A. (1959), "Extensional vibrations of elastic plates", J. Appl. Mech., 26(4), 561-569. https://doi.org/10.1115/1.4012112 
  35. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001 
  36. Nowinski, J.L. (1984), "On the nonlocal theory of wave propagation in elastic plates", J. Appl. Mech., 51(3), 608-613. https://doi.org/10.1115/1.3167681 
  37. Othmani, C., Zhang, H. and Lu, C.F. (2020), "Effects of initial stresses on guided wave propagation in multilayered PZT-4/PZT-5A composites: A polynomial expansion approach", Appl. Math. Model., 78, 148-168. https://doi.org/10.1016/j.apm.2019.10.017 
  38. Oveissi, S. and Ghassemi, A. (2018), "Longitudinal and transverse wave propagation analysis of stationary and axially moving carbon nanotubes conveying nano-fluid", Appl. Math. Model., 60, 460-477. https://doi.org/10.1016/j.apm.2018.03.004 
  39. Quintanilla, F.H., Lowe, M.J.S. and Craster, R.V., (2016), "Full 3D dispersion curve solutions for guided waves in generally anisotropic media", J. Sound. Vib., 363, 545-559. https://doi.org/10.1016/j.jsv.2015.10.017 
  40. Tran, T.T., Tran, V.K., Pham, Q.H. and Zenkour, A.M. (2021), "Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation", Compos. Struct., 264(1), 113737. https://doi.org/10.1016/j.compstruct.2021.113737 
  41. Wang, X., Li, F., Zhang, X., Yu, J., and Qiao, H. (2021), "Thermoelastic guided wave in fractional order functionally graded plates: An analytical integration Legendre polynomial approach", Compos. Struct., 256, 112997. https://doi.org/10.1016/j.compstruct.2020.112997. 
  42. Yan, D.J., Chen, A.L., Wang, Y.S., Zhang, C.Z. and Golub, M. (2017), "Propagation of guided elastic waves in nanoscale layered periodic piezoelectric composites", Eur. J. Mech. ASolid, 66, 158-167. https://doi.org/10.1016/j.euromechsol.2017.07.003 
  43. Yan, X. and Yuan, F.G. (2015), "Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge", J. Acoust. Soc. Am., 137(6), 3523-3533. https://doi.org/10.1121/1.4921599 
  44. Yan, X., and Yuan, F.G., (2018), "A semi-analytical approach for SH guided wave mode conversion from evanescent into propagating", Ultrasonics, 84, 430-437. https://doi.org/10.1016/j.ultras.2017.12.006 
  45. Yang, C., Yu, J., Liu, C., Zhang, B. (2022), "Elastic wave reflection/transmission in non-homogeneous magneto-electro-elastic nanoplates based on the modified couple stress theory", Mech Solids+, https://doi.org/10.3103/S0025654422020121 
  46. Yang, F., Chong, A., Lam, D. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X 
  47. Yu, J.G., Lefebvre, J.E., Xu, W.J., Benmeddour, F. and Zhang, X.M. (2017), "Propagating and non-propagating waves in infinite plates and rectangular cross section plates: orthogonal polynomial approach", Acta. Mech., 228 (11), 1-15. https://doi.org/10.1007/s00707-017-1917-1 
  48. Yu, J., Wang, X., Zhang, X., Li, Z., Li, F. (2022), "An analytical integration Legendre polynomial series approach for Lamb waves in fractional order thermoelastic multilayered plates", Math. Method. Appl. Sci., 45(12), 7631-7651. https://doi.org/10.1002/mma.8266 
  49. Zhang, B., Yu, J.G., Lefebvre, J.E., Xu, W.J., Zhang, X.M. and Ming, P.M. (2019), "Guided wave propagation in functionally graded cylindrical structures with sector cross-sections", Math. Mech. Solids, 24(2), 434-447. https://doi.org/10.1177/1081286517742433 
  50. Zhang, B., Wang, X.H., Elmaimouni, L., Yu, J.G. and Zhang, X.M. (2022), "Axial guided wave characteristics in functionally graded one-dimensional hexagonal piezoelectric quasi-crystal cylinders", Math. Mech. Solids, 27(1), 125-143. https://doi.org/10.1177/10812865211013458 
  51. Zhang, K., Ge, M.H., Zhao, C., Deng, Z.C. and Xu, X.J. (2019), "Free vibration of nonlocal Timoshenko beams made of functionally graded materials by Symplectic method", Compos. Part B Eng., 156, 174-184. https://doi.org/10.1016/j.compositesb.2018.08.051 
  52. Zhang X, Li Z, Yu J. (2018), "The Computation of complex dispersion and properties of evanescent Lamb wave in functionally graded piezoelectric-piezomagnetic plates", Materials, 11(7), 1186. https://doi.org/10.3390/ma11071186 
  53. Zhang, Y.W., Chen, J., Zeng, W., Teng, Y.Y., Fang, B. and Zang, J. (2015), "Surface and thermal effects of the flexural wave propagation of piezoelectric functionally graded nanobeam using nonlocal elasticity", Comp. Mater. Sci., 97, 222-226. https://doi.org/10.1016/j.commatsci.2014.10.046. 
  54. Zhu, F., Wang, B., Qian, Z.H. and Pan, E.N. (2018), "Accurate characterization of 3D dispersion curves and mode shapes of waves propagating in generally anisotropic viscoelastic/elastic plates", Int. J. Solids Struct., 150, 52-65. https://doi.org/10.1016/j.ijsolstr.2018.06.001.