과제정보
We thank Franz-Ulrich Hartl, Jeffrey Rothstein, Addgene, and Developmental Studies Hybridoma Bank for reagents. This work was supported by grants from the Suh Kyungbae Foundation (SUHF-17020101); from the National Research Foundation funded by the Ministry of Science and Information & Communication Technology (MSIT), Republic of Korea (NRF-2021R1A2C3011706; NRF-2021M3A9G8022960; NRF-2018R1A5A1024261).
참고문헌
- Agarwal, S. and Ganesh, S. (2020). Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress. J. Cell Sci. 133, jcs245589.
- Alagar Boopathy, L.R., Jacob-Tomas, S., Alecki, C., and Vera, M. (2022). Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J. Biol. Chem. 298, 101796.
- Amunts, A., Brown, A., Toots, J., Scheres, S.H.W., and Ramakrishnan, V. (2015). Ribosome. The structure of the human mitochondrial ribosome. Science 348, 95-98. https://doi.org/10.1126/science.aaa1193
- Andreasson, C., Ott, M., and Buttner, S. (2019). Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep. 20, e47865.
- Audas, T.E., Audas, D.E., Jacob, M.D., Ho, J.J.D., Khacho, M., Wang, M., Perera, J.K., Gardiner, C., Bennett, C.A., Head, T., et al. (2016). Adaptation to stressors by systemic protein amyloidogenesis. Dev. Cell 39, 155-168. https://doi.org/10.1016/j.devcel.2016.09.002
- Bennett, C.F., Latorre-Muro, P., and Puigserver, P. (2022). Mechanisms of mitochondrial respiratory adaptation. Nat. Rev. Mol. Cell Biol. 23, 817-835. https://doi.org/10.1038/s41580-022-00506-6
- Bennett, C.F., Vander Wende, H., Simko, M., Klum, S., Barfield, S., Choi, H., Pineda, V.V., and Kaeberlein, M. (2014). Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat. Commun. 5, 3483.
- Bohovych, I. and Khalimonchuk, O. (2016). Sending out an SOS: mitochondria as a signaling hub. Front. Cell Dev. Biol. 4, 109.
- Chakrabarty, R.P. and Chandel, N.S. (2022). Beyond ATP, new roles of mitochondria. Biochem. (Lond.) 44, 2-8. https://doi.org/10.1042/bio_2022_119
- Chaudhry, A., Shi, R., and Luciani, D.S. (2020). A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 318, E87-E101. https://doi.org/10.1152/ajpendo.00457.2019
- Cipolat, S., de Brito, O.M., Dal Zilio, B., and Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U. S. A. 101, 15927-15932. https://doi.org/10.1073/pnas.0407043101
- D'Angelo, M.A., Gomez-Cavazos, J.S., Mei, A., Lackner, D.H., and Hetzer, M.W. (2012). A change in nuclear pore complex composition regulates cell differentiation. Dev. Cell 22, 446-458. https://doi.org/10.1016/j.devcel.2011.11.021
- Desai, R., East, D.A., Hardy, L., Faccenda, D., Rigon, M., Crosby, J., Alvarez, M.S., Singh, A., Mainenti, M., Hussey, L.K., et al. (2020). Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci. Adv. 6, eabc9955.
- Divakaruni, A.S. and Jastroch, M. (2022). A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat. Metab. 4, 978-994. https://doi.org/10.1038/s42255-022-00619-4
- Eckl, E.M., Ziegemann, O., Krumwiede, L., Fessler, E., and Jae, L.T. (2021). Sensing, signaling and surviving mitochondrial stress. Cell. Mol. Life Sci. 78, 5925-5951. https://doi.org/10.1007/s00018-021-03887-7
- Frottin, F., Schueder, F., Tiwary, S., Gupta, R., Korner, R., Schlichthaerle, T., Cox, J., Jungmann, R., Hartl, F.U., and Hipp, M.S. (2019). The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342-347. https://doi.org/10.1126/science.aaw9157
- Gallagher, P.S., Oeser, M.L., Abraham, A.C., Kaganovich, D., and Gardner, R.G. (2014). Cellular maintenance of nuclear protein homeostasis. Cell. Mol. Life Sci. 71, 1865-1879. https://doi.org/10.1007/s00018-013-1530-y
- Gallardo, P., Real-Calderon, P., Flor-Parra, I., Salas-Pino, S., and Daga, R.R. (2020). Acute heat stress leads to reversible aggregation of nuclear proteins into nucleolar rings in fission yeast. Cell Rep. 33, 108377.
- Gupta, R., Kasturi, P., Bracher, A., Loew, C., Zheng, M., Villella, A., Garza, D., Hartl, F.U., and Raychaudhuri, S. (2011). Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8, 879-884. https://doi.org/10.1038/nmeth.1697
- Houtkooper, R.H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., Williams, R.W., and Auwerx, J. (2013). Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451-457. https://doi.org/10.1038/nature12188
- Kantidze, O.L., Velichko, A.K., Luzhin, A.V., and Razin, S.V. (2016). Heat stress-induced DNA damage. Acta Naturae 8, 75-78. https://doi.org/10.32607/20758251-2016-8-2-75-78
- Kay, M. and Wobbrock, J. (2016). ARTool: aligned rank transform for nonparametric factorial ANOVAs. R package version 0.10 2.
- Kim, J.H., Ki, Y., Lee, H., Hur, M.S., Baik, B., Hur, J.H., Nam, D., and Lim, C. (2020). The voltage-gated potassium channel Shaker promotes sleep via thermosensitive GABA transmission. Commun. Biol. 3, 174.
- Koncha, R.R., Ramachandran, G., Sepuri, N.B.V., and Ramaiah, K.V.A. (2021). CCCP-induced mitochondrial dysfunction - characterization and analysis of integrated stress response to cellular signaling and homeostasis. FEBS J. 288, 5737-5754. https://doi.org/10.1111/febs.15868
- Kovacs, D., Sigmond, T., Hotzi, B., Bohar, B., Fazekas, D., Deak, V., Vellai, T., and Barna, J. (2019). HSF1Base: a comprehensive database of HSF1 (heat shock factor 1) target genes. Int. J. Mol. Sci. 20, 5815.
- Labbadia, J., Brielmann, R.M., Neto, M.F., Lin, Y.F., Haynes, C.M., and Morimoto, R.I. (2017). Mitochondrial stress restores the heat shock response and prevents proteostasis collapse during aging. Cell Rep. 21, 1481-1494. https://doi.org/10.1016/j.celrep.2017.10.038
- Lee, J., Park, J., Kim, J.H., Lee, G., Park, T.E., Yoon, K.J., Kim, Y.K., and Lim, C. (2020). LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biol. 18, e3001002.
- Lee, Y., Kim, J., Kim, H., Han, J.E., Kim, S., Kang, K.H., Kim, D., Kim, J.M., and Koh, H. (2022). Pyruvate dehydrogenase kinase protects dopaminergic neurons from oxidative stress in Drosophila DJ-1 null mutants. Mol. Cells 45, 454-464. https://doi.org/10.14348/molcells.2022.5002
- Maghames, C.M., Lobato-Gil, S., Perrin, A., Trauchessec, H., Rodriguez, M.S., Urbach, S., Marin, P., and Xirodimas, D.P. (2018). NEDDylation promotes nuclear protein aggregation and protects the Ubiquitin Proteasome System upon proteotoxic stress. Nat. Commun. 9, 4376.
- Martinez-Reyes, I. and Chandel, N.S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102.
- Masser, A.E., Kang, W., Roy, J., Mohanakrishnan Kaimal, J., Quintana-Cordero, J., Friedlander, M.R., and Andreasson, C. (2019). Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. Elife 8, e47791.
- Maxwell, B.A., Gwon, Y., Mishra, A., Peng, J., Nakamura, H., Zhang, K., Kim, H.J., and Taylor, J.P. (2021). Ubiquitination is essential for recovery of cellular activities after heat shock. Science 372, eabc3593.
- Mediani, L., Guillen-Boixet, J., Vinet, J., Franzmann, T.M., Bigi, I., Mateju, D., Carra, A.D., Morelli, F.F., Tiago, T., Poser, I., et al. (2019). Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J. 38, e101341.
- Melber, A. and Haynes, C.M. (2018). UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. 28, 281-295. https://doi.org/10.1038/cr.2018.16
- Mottis, A., Herzig, S., and Auwerx, J. (2019). Mitocellular communication: shaping health and disease. Science 366, 827-832. https://doi.org/10.1126/science.aax3768
- Nollen, E.A., Salomons, F.A., Brunsting, J.F., van der Want, J.J., Sibon, O.C., and Kampinga, H.H. (2001). Dynamic changes in the localization of thermally unfolded nuclear proteins associated with chaperone-dependent protection. Proc. Natl. Acad. Sci. U. S. A. 98, 12038-12043. https://doi.org/10.1073/pnas.201112398
- Ogawa, Y. and Imamoto, N. (2018). Nuclear transport adapts to varying heat stress in a multistep mechanism. J. Cell Biol. 217, 2341-2352. https://doi.org/10.1083/jcb.201712042
- Panchal, K. and Tiwari, A.K. (2019). Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 47, 151-173. https://doi.org/10.1016/j.mito.2018.11.002
- Pelham, H., Lewis, M., and Lindquist, S. (1984). Expression of a Drosophila heat shock protein in mammalian cells: transient association with nucleoli after heat shock. Philos. Trans. R. Soc. Lond. B Biol. Sci. 307, 301-307. https://doi.org/10.1098/rstb.1984.0131
- Pellegrino, M.W., Nargund, A.M., and Haynes, C.M. (2013). Signaling the mitochondrial unfolded protein response. Biochim. Biophys. Acta 1833, 410-416. https://doi.org/10.1016/j.bbamcr.2012.02.019
- Quiros, P.M., Mottis, A., and Auwerx, J. (2016). Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17, 213-226. https://doi.org/10.1038/nrm.2016.23
- Rackham, O. and Filipovska, A. (2022). Organization and expression of the mammalian mitochondrial genome. Nat. Rev. Genet. 23, 606-623. https://doi.org/10.1038/s41576-022-00480-x
- Richter, U., Lahtinen, T., Marttinen, P., Suomi, F., and Battersby, B.J. (2015). Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. J. Cell Biol. 211, 373-389. https://doi.org/10.1083/jcb.201504062
- Richter, U., Ng, K.Y., Suomi, F., Marttinen, P., Turunen, T., Jackson, C., Suomalainen, A., Vihinen, H., Jokitalo, E., Nyman, T.A., et al. (2019). Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Sci. Alliance 2, e201800219.
- Riguet, N., Mahul-Mellier, A.L., Maharjan, N., Burtscher, J., Croisier, M., Knott, G., Hastings, J., Patin, A., Reiterer, V., Farhan, H., et al. (2021). Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties. Nat. Commun. 12, 6579.
- Ryu, S.W., Stewart, R., Pectol, D.C., Ender, N.A., Wimalarathne, O., Lee, J.H., Zanini, C.P., Harvey, A., Huibregtse, J.M., Mueller, P., et al. (2020). Proteome-wide identification of HSP70/HSC70 chaperone clients in human cells. PLoS Biol. 18, e3000606.
- Schmidt, U., Weigert, M., Broaddus, C., and Myers, G. (2018). Cell detection with star-convex polygons. In Medical Image Computing and Computer Assisted Intervention - MICCAI 2018, A.F. Frangi, J.A. Schnabel, C. Davatzikos, C. Alberola-Lopez, and G. Fichtinger, eds. (Cham: Springer International Publishing), pp. 265-273.
- Stewart, M. (2007). Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195-208. https://doi.org/10.1038/nrm2114
- Suhm, T., Kaimal, J.M., Dawitz, H., Peselj, C., Masser, A.E., Hanzen, S., Ambrozic, M., Smialowska, A., Bjorck, M.L., Brzezinski, P., et al. (2018). Mitochondrial translation efficiency controls cytoplasmic protein homeostasis. Cell Metab. 27, 1309-1322.e6. https://doi.org/10.1016/j.cmet.2018.04.011
- Theodoridis, P.R., Bokros, M., Marijan, D., Balukoff, N.C., Wang, D., Kirk, C.C., Budine, T.D., Goldsmith, H.D., Wang, M., Audas, T.E., et al. (2021). Local translation in nuclear condensate amyloid bodies. Proc. Natl. Acad. Sci. U. S. A. 118, e2014457118.
- Tulli, S., Del Bondio, A., Baderna, V., Mazza, D., Codazzi, F., Pierson, T.M., Ambrosi, A., Nolte, D., Goizet, C., Toro, C., et al. (2019). Pathogenic variants in the AFG3L2 proteolytic domain cause SCA28 through haploinsufficiency and proteostatic stress-driven OMA1 activation. J. Med. Genet. 56, 499-511. https://doi.org/10.1136/jmedgenet-2018-105766
- Velazquez, J.M. and Lindquist, S. (1984). hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36, 655-662. https://doi.org/10.1016/0092-8674(84)90345-3
- Velichko, A.K., Petrova, N.V., Kantidze, O.L., Razin, S.V., and Solomon, M.J. (2012). Dual effect of heat shock on DNA replication and genome integrity. Mol. Biol. Cell 23, 3450-3460. https://doi.org/10.1091/mbc.e11-12-1009
- Wang, L., Schumann, U., Liu, Y., Prokopchuk, O., and Steinacker, J.M. (2012). Heat shock protein 70 (Hsp70) inhibits oxidative phosphorylation and compensates ATP balance through enhanced glycolytic activity. J. Appl. Physiol. (1985) 113, 1669-1676. https://doi.org/10.1152/japplphysiol.00658.2012
- Welch, W.J. and Feramisco, J.R. (1984). Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J. Biol. Chem. 259, 4501-4513. https://doi.org/10.1016/S0021-9258(17)43075-4
- Wentink, A.S., Nillegoda, N.B., Feufel, J., Ubartaite, G., Schneider, C.P., De Los Rios, P., Hennig, J., Barducci, A., and Bukau, B. (2020). Molecular dissection of amyloid disaggregation by human HSP70. Nature 587, 483-488. https://doi.org/10.1038/s41586-020-2904-6
- Yun, J. and Finkel, T. (2014). Mitohormesis. Cell Metab. 19, 757-766. https://doi.org/10.1016/j.cmet.2014.01.011
- Yusupova, G. and Yusupov, M. (2017). Crystal structure of eukaryotic ribosome and its complexes with inhibitors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160184.
- Zhang, K., Daigle, J.G., Cunningham, K.M., Coyne, A.N., Ruan, K., Grima, J.C., Bowen, K.E., Wadhwa, H., Yang, P., Rigo, F., et al. (2018). Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173, 958-971.e17. https://doi.org/10.1016/j.cell.2018.03.025
- Zhang, K., Donnelly, C.J., Haeusler, A.R., Grima, J.C., Machamer, J.B., Steinwald, P., Daley, E.L., Miller, S.J., Cunningham, K.M., Vidensky, S., et al. (2015). The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56-61. https://doi.org/10.1038/nature14973
- Zhu, D., Li, X., and Tian, Y. (2022). Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem. Sci. 47, 645-659. https://doi.org/10.1016/j.tibs.2022.03.008