Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF2021R1 A6A1A03040260, NRF2021R1A2C2005472) and Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (KHI-DIHI21C00710).
References
- Athanasiadis, A., Rich, A., and Maas, S. (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391.
- Baker, A.R. and Slack, F.J. (2022). ADAR1 and its implications in cancer development and treatment. Trends Genet. 38, 821-830. https://doi.org/10.1016/j.tig.2022.03.013
- Chang, S. and Sharan, S.K. (2012). BRCA1 and microRNAs: emerging networks and potential therapeutic targets. Mol. Cells 34, 425-432. https://doi.org/10.1007/s10059-012-0118-y
- Chen, L., Li, Y., Lin, C.H., Chan, T.H., Chow, R.K., Song, Y., Liu, M., Yuan, Y.F., Fu, L., Kong, K.L., et al. (2013). Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19, 209-216. https://doi.org/10.1038/nm.3043
- Cho, C.J., Jung, J., Jiang, L., Lee, E.J., Kim, D.S., Kim, B.S., Kim, H.S., Jung, H.Y., Song, H.J., Hwang, S.W., et al. (2018). Combinatory RNA-sequencing analyses reveal a dual mode of gene regulation by ADAR1 in gastric cancer. Dig. Dis. Sci. 63, 1835-1850. https://doi.org/10.1007/s10620-018-5081-9
- Danan-Gotthold, M., Guyon, C., Giraud, M., Levanon, E.Y., and Abramson, J. (2016). Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biol. 17, 219.
- Dang, I., Gorelik, R., Sousa-Blin, C., Derivery, E., Guerin, C., Linkner, J., Nemethova, M., Dumortier, J.G., Giger, F.A., Chipysheva, T.A., et al. (2013). Inhibitory signalling to the Arp2/3 complex steers cell migration. Nature 503, 281-284. https://doi.org/10.1038/nature12611
- Daniel, C., Silberberg, G., Behm, M., and Ohman, M. (2014). Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol. 15, R28.
- Gallo, A., Vukic, D., Michalik, D., O'Connell, M.A., and Keegan, L.P. (2017). ADAR RNA editing in human disease; more to it than meets the I. Hum. Genet. 136, 1265-1278. https://doi.org/10.1007/s00439-017-1837-0
- Ishizuka, J.J., Manguso, R.T., Cheruiyot, C.K., Bi, K., Panda, A., Iracheta-Vellve, A., Miller, B.C., Du, P.P., Yates, K.B., Dubrot, J., et al. (2019). Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43-48. https://doi.org/10.1038/s41586-018-0768-9
- Iwaya, K., Norio, K., and Mukai, K. (2007). Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod. Pathol. 20, 339-343. https://doi.org/10.1038/modpathol.3800741
- Izdebska, M., Zielinska, W., Halas-Wisniewska, M., and Grzanka, A. (2020). Involvement of actin and actin-binding proteins in carcinogenesis. Cells 9, 2245.
- Jiang, L., Park, M.J., Cho, C.J., Lee, K., Jung, M.K., Pack, C.G., Myung, S.J., and Chang, S. (2020). ADAR1 suppresses interferon signaling in gastric cancer cells by microRNA-302a-mediated IRF9/STAT1 regulation. Int. J. Mol. Sci. 21, 6195.
- Kashani-Sabet, M., Rangel, J., Torabian, S., Nosrati, M., Simko, J., Jablons, D.M., Moore, D.H., Haqq, C., Miller, J.R., 3rd, and Sagebiel, R.W. (2009). A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc. Natl. Acad. Sci. U. S. A. 106, 6268-6272. https://doi.org/10.1073/pnas.0901185106
- Kim, H.R., Kwon, M.S., Lee, S., Mun, Y., Lee, K.S., Kim, C.H., Na, B.R., Kim, B.N.R., Piragyte, I., Lee, H.S., et al. (2018). TAGLN2 polymerizes G-actin in a low ionic state but blocks Arp2/3-nucleated actin branching in physiological conditions. Sci. Rep. 8, 5503.
- Kono, M. and Akiyama, M. (2019). Dyschromatosis symmetrica hereditaria and reticulate acropigmentation of Kitamura: an update. J. Dermatol. Sci. 93, 75-81. https://doi.org/10.1016/j.jdermsci.2019.01.004
- Kung, C.P., Cottrell, K.A., Ryu, S., Bramel, E.R., Kladney, R.D., Bao, E.A., Freeman, E.C., Sabloak, T., Maggi, L., Jr., and Weber, J.D. (2021). Evaluating the therapeutic potential of ADAR1 inhibition for triple-negative breast cancer. Oncogene 40, 189-202. https://doi.org/10.1038/s41388-020-01515-5
- Lamers, M.M., van den Hoogen, B.G., and Haagmans, B.L. (2019). ADAR1: "editor-in-chief" of cytoplasmic innate immunity. Front. Immunol. 10, 1763.
- Lazzari, E., Mondala, P.K., Santos, N.D., Miller, A.C., Pineda, G., Jiang, Q., Leu, H., Ali, S.A., Ganesan, A.P., Wu, C.N., et al. (2017). Alu-dependent RNA editing of GLI1 promotes malignant regeneration in multiple myeloma. Nat. Commun. 8, 1922.
- Li, Y., Qiu, J., Pang, T., Guo, Z., Su, Y., Zeng, Q., and Zhang, X. (2017). Restoration of Arpin suppresses aggressive phenotype of breast cancer cells. Biomed. Pharmacother. 92, 116-121. https://doi.org/10.1016/j.biopha.2017.05.053
- Liu, Z., Yang, X., Chen, C., Liu, B., Ren, B., Wang, L., Zhao, K., Yu, S., and Ming, H. (2013). Expression of the Arp2/3 complex in human gliomas and its role in the migration and invasion of glioma cells. Oncol. Rep. 30, 2127-2136. https://doi.org/10.3892/or.2013.2669
- Livak, K.J. and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
- Livingston, J.H., Lin, J.P., Dale, R.C., Gill, D., Brogan, P., Munnich, A., Kurian, M.A., Gonzalez-Martinez, V., De Goede, C.G., Falconer, A., et al. (2014). A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet. 51, 76-82. https://doi.org/10.1136/jmedgenet-2013-102038
- Lomakina, M.E., Lallemand, F., Vacher, S., Molinie, N., Dang, I., Cacheux, W., Chipysheva, T.A., Ermilova, V.D., de Koning, L., Dubois, T., et al. (2016). Arpin downregulation in breast cancer is associated with poor prognosis. Br. J. Cancer 114, 545-553. https://doi.org/10.1038/bjc.2016.18
- Mehdipour, P., Marhon, S.A., Ettayebi, I., Chakravarthy, A., Hosseini, A., Wang, Y., de Castro, F.A., Loo Yau, H., Ishak, C., Abelson, S., et al. (2020). Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588, 169-173. https://doi.org/10.1038/s41586-020-2844-1
- Nemlich, Y., Baruch, E.N., Besser, M.J., Shoshan, E., Bar-Eli, M., Anafi, L., Barshack, I., Schachter, J., Ortenberg, R., and Markel, G. (2018). ADAR1-mediated regulation of melanoma invasion. Nat. Commun. 9, 2154.
- Nemlich, Y., Greenberg, E., Ortenberg, R., Besser, M.J., Barshack, I., Jacob-Hirsch, J., Jacoby, E., Eyal, E., Rivkin, L., Prieto, V.G., et al. (2013). MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth. J. Clin. Invest. 123, 2703-2718. https://doi.org/10.1172/JCI62980
- Ota, H., Sakurai, M., Gupta, R., Valente, L., Wulff, B.E., Ariyoshi, K., Iizasa, H., Davuluri, R.V., and Nishikura, K. (2013). ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 153, 575-589. https://doi.org/10.1016/j.cell.2013.03.024
- Quin, J., Sedmik, J., Vukic, D., Khan, A., Keegan, L.P., and O'Connell, M.A. (2021). ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem. Sci. 46, 758-771. https://doi.org/10.1016/j.tibs.2021.02.002
- Rice, G.I., Kasher, P.R., Forte, G.M., Mannion, N.M., Greenwood, S.M., Szynkiewicz, M., Dickerson, J.E., Bhaskar, S.S., Zampini, M., Briggs, T.A., et al. (2012). Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243-1248. https://doi.org/10.1038/ng.2414
- Riedmann, E.M., Schopoff, S., Hartner, J.C., and Jantsch, M.F. (2008). Specificity of ADAR-mediated RNA editing in newly identified targets. RNA 14, 1110-1118. https://doi.org/10.1261/rna.923308
- Rotty, J.D., Wu, C., and Bear, J.E. (2013). New insights into the regulation and cellular functions of the ARP2/3 complex. Nat. Rev. Mol. Cell Biol. 14, 7-12. https://doi.org/10.1038/nrm3492
- Shigeyasu, K., Okugawa, Y., Toden, S., Miyoshi, J., Toiyama, Y., Nagasaka, T., Takahashi, N., Kusunoki, M., Takayama, T., Yamada, Y., et al. (2018). AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer. JCI Insight 3, e99976.
- Shoshan, E., Mobley, A.K., Braeuer, R.R., Kamiya, T., Huang, L., Vasquez, M.E., Salameh, A., Lee, H.J., Kim, S.J., Ivan, C., et al. (2015). Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat. Cell Biol. 17, 311-321. https://doi.org/10.1038/ncb3110
- Suzuki, N., Suzuki, T., Inagaki, K., Ito, S., Kono, M., Fukai, K., Takama, H., Sato, K., Ishikawa, O., Abe, M., et al. (2005). Mutation analysis of the ADAR1 gene in dyschromatosis symmetrica hereditaria and genetic differentiation from both dyschromatosis universalis hereditaria and acropigmentatio reticularis. J. Invest. Dermatol. 124, 1186-1192. https://doi.org/10.1111/j.0022-202X.2005.23732.x
- Takeda, S., Shigeyasu, K., Okugawa, Y., Yoshida, K., Mori, Y., Yano, S., Noma, K., Umeda, Y., Kondo, Y., Kishimoto, H., et al. (2019). Activation of AZIN1 RNA editing is a novel mechanism that promotes invasive potential of cancer-associated fibroblasts in colorectal cancer. Cancer Lett. 444, 127-135. https://doi.org/10.1016/j.canlet.2018.12.009
- Veltman, D. (2014). Actin dynamics: cell migration takes a new turn with arpin. Curr. Biol. 24, R31-R33. https://doi.org/10.1016/j.cub.2013.11.022
- Volkmann, N., Amann, K.J., Stoilova-McPhie, S., Egile, C., Winter, D.C., Hazelwood, L., Heuser, J.E., Li, R., Pollard, T.D., and Hanein, D. (2001). Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 293, 2456-2459. https://doi.org/10.1126/science.1063025
- Wang, I.X., So, E., Devlin, J.L., Zhao, Y., Wu, M., and Cheung, V.G. (2013). ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep. 5, 849-860. https://doi.org/10.1016/j.celrep.2013.10.002
- Yu, J., Zhang, C., Yu, Q., Yu, H., and Zhang, B. (2019). ADAR1 p110 enhances adhesion of tumor cells to extracellular matrix in hepatocellular carcinoma via up-regulating ITGA2 expression. Med. Sci. Monit. 25, 1469-1479. https://doi.org/10.12659/MSM.911944
- Zheng, H.C., Zheng, Y.S., Li, X.H., Takahashi, H., Hara, T., Masuda, S., Yang, X.H., Guan, Y.F., and Takano, Y. (2008). Arp2/3 overexpression contributed to pathogenesis, growth and invasion of gastric carcinoma. Anticancer Res. 28(4B), 2225-2232.