DOI QR코드

DOI QR Code

Structure-Based Insight on the Mechanism of N-Glycosylation Inhibition by Tunicamycin

  • Danbi Yoon (College of Pharmacy, Chung-Ang University) ;
  • Ju Heun Moon (College of Pharmacy, Chung-Ang University) ;
  • Anna Cho (College of Pharmacy, Chung-Ang University) ;
  • Hyejoon Boo (College of Pharmacy, Chung-Ang University) ;
  • Jeong Seok Cha (College of Pharmacy, Chung-Ang University) ;
  • Yoonji Lee (College of Pharmacy, Chung-Ang University) ;
  • Jiho Yoo (College of Pharmacy, Chung-Ang University)
  • Received : 2023.01.01
  • Accepted : 2023.02.20
  • Published : 2023.06.30

Abstract

N-glycosylation, a common post-translational modification, is widely acknowledged to have a significant effect on protein stability and folding. N-glycosylation is a complex process that occurs in the endoplasmic reticulum (ER) and requires the participation of multiple enzymes. GlcNAc-1-P-transferase (GPT) is essential for initiating N-glycosylation in the ER. Tunicamycin is a natural product that inhibits N-glycosylation and produces ER stress, and thus it is utilized in research. The molecular mechanism by which GPT triggers N-glycosylation is discussed in this review based on the GPT structure. Based on the structure of the GPT-tunicamycin complex, we also discuss how tunicamycin reduces GPT activity, which prevents N-glycosylation. This review will be highly useful for understanding the role of GPT in the N-glycosylation of proteins, as well as presents a potential for considering tunicamycin as an antibiotic treatment.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1C1C1012076 to J.Y.) and by the ChungAng University Research Grants in 2020 (to Y.L.).

References

  1. Aebi, M. (2013). N-linked protein glycosylation in the ER. Biochim. Biophys. Acta 1833, 2430-2437. https://doi.org/10.1016/j.bbamcr.2013.04.001
  2. Al-Dabbagh, B., Henry, X., El Ghachi, M., Auger, G., Blanot, D., Parquet, C., Mengin-Lecreulx, D., and Bouhss, A. (2008). Active site mapping of MraY, a member of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily, catalyzing the first membrane step of peptidoglycan biosynthesis. Biochemistry 47, 8919-8928. https://doi.org/10.1021/bi8006274
  3. Belaya, K., Finlayson, S., Slater, C.R., Cossins, J., Liu, W.W., Maxwell, S., McGowan, S.J., Maslau, S., Twigg, S.R., Walls, T.J., et al. (2012). Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am. J. Hum. Genet. 91, 193-201. https://doi.org/10.1016/j.ajhg.2012.05.022
  4. Blom, N., Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., and Brunak, S. (2004). Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4, 1633-1649. https://doi.org/10.1002/pmic.200300771
  5. Bouhss, A., Trunkfield, A.E., Bugg, T.D., and Mengin-Lecreulx, D. (2008). The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. Rev. 32, 208-233. https://doi.org/10.1111/j.1574-6976.2007.00089.x
  6. Chung, B.C., Mashalidis, E.H., Tanino, T., Kim, M., Matsuda, A., Hong, J., Ichikawa, S., and Lee, S.Y. (2016). Structural insights into inhibition of lipid I production in bacterial cell wall synthesis. Nature 533, 557-560. https://doi.org/10.1038/nature17636
  7. Chung, B.C., Zhao, J., Gillespie, R.A., Kwon, D.Y., Guan, Z., Hong, J., Zhou, P., and Lee, S.Y. (2013). Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 341, 1012-1016. https://doi.org/10.1126/science.1236501
  8. Dan, N. and Lehrman, M.A. (1997). Oligomerization of hamster UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase, an enzyme with multiple transmembrane spans. J. Biol. Chem. 272, 14214-14219. https://doi.org/10.1074/jbc.272.22.14214
  9. Dong, Y.Y., Wang, H., Pike, A.C.W., Cochrane, S.A., Hamedzadeh, S., Wyszynski, F.J., Bushell, S.R., Royer, S.F., Widdick, D.A., Sajid, A., et al. (2018). Structures of DPAGT1 explain glycosylation disease mechanisms and advance TB antibiotic design. Cell 175, 1045-1058.e16. https://doi.org/10.1016/j.cell.2018.10.037
  10. Goulabchand, R., Vincent, T., Batteux, F., Eliaou, J.F., and Guilpain, P. (2014). Impact of autoantibody glycosylation in autoimmune diseases. Autoimmun. Rev. 13, 742-750. https://doi.org/10.1016/j.autrev.2014.02.005
  11. Hakulinen, J.K., Hering, J., Branden, G., Chen, H., Snijder, A., Ek, M., and Johansson, P. (2017). MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat. Chem. Biol. 13, 265-267. https://doi.org/10.1038/nchembio.2270
  12. Haltiwanger, R.S. and Lowe, J.B. (2004). Role of glycosylation in development. Annu. Rev. Biochem. 73, 491-537. https://doi.org/10.1146/annurev.biochem.73.011303.074043
  13. Huang, K.Y., Lee, T.Y., Kao, H.J., Ma, C.T., Lee, C.C., Lin, T.H., Chang, W.C., and Huang, H.D. (2019). dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications. Nucleic Acids Res. 47(D1), D298-D308. https://doi.org/10.1093/nar/gky1074
  14. Izumi, M., Yuasa, H., and Hashimoto, H. (2009). Bisubstrate analogues as glycosyltransferase inhibitors. Curr. Top. Med. Chem. 9, 87-105. https://doi.org/10.2174/156802609787354351
  15. Karve, T.M. and Cheema, A.K. (2011). Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J. Amino Acids 2011, 207691.
  16. Kaushal, G.P. and Elbein, A.D. (1985). Purification and properties of UDP-GlcNAc:dolichyl-phosphate GlcNAc-1-phosphate transferase. Activation and inhibition of the enzyme. J. Biol. Chem. 260, 16303-16309. https://doi.org/10.1016/S0021-9258(17)36236-1
  17. Keller, R.K., Boon, D.Y., and Crum, F.C. (1979). N-Acetylglucosamine- 1-phosphate transferase from hen oviduct: solubilization, characterization, and inhibition by tunicamycin. Biochemistry 18, 3946-3952. https://doi.org/10.1021/bi00585a016
  18. Lauc, G., Huffman, J.E., Pucic, M., Zgaga, L., Adamczyk, B., Muzinic, A., Novokmet, M., Polasek, O., Gornik, O., Kristic, J., et al. (2013). Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225.
  19. Lehle, L. and Tanner, W. (1976). The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett. 72, 167-170. https://doi.org/10.1016/0014-5793(76)80922-2
  20. Lehrman, M.A. (1991). Biosynthesis of N-acetylglucosamine-P-P-dolichol, the committed step of asparagine-linked oligosaccharide assembly. Glycobiology 1, 553-562. https://doi.org/10.1093/glycob/1.6.553
  21. Mashalidis, E.H., Kaeser, B., Terasawa, Y., Katsuyama, A., Kwon, D.Y., Lee, K., Hong, J., Ichikawa, S., and Lee, S.Y. (2019). Chemical logic of MraY inhibition by antibacterial nucleoside natural products. Nat. Commun. 10, 2917.
  22. Mashalidis, E.H. and Lee, S.Y. (2020). Structures of bacterial MraY and human GPT provide insights into rational antibiotic design. J. Mol. Biol. 432, 4946-4963. https://doi.org/10.1016/j.jmb.2020.03.017
  23. Nakaya, T., Yabe, M., Mashalidis, E.H., Sato, T., Yamamoto, K., Hikiji, Y., Katsuyama, A., Shinohara, M., Minato, Y., Takahashi, S., et al. (2022). Synthesis of macrocyclic nucleoside antibacterials and their interactions with MraY. Nat. Commun. 13, 7575.
  24. Ohtsubo, K. and Marth, J.D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell 126, 855-867. https://doi.org/10.1016/j.cell.2006.08.019
  25. Plouhar, P.L. and Bretthauer, R.K. (1982). A phospholipid requirement for dolichol pyrophosphate N-acetylglucosamine synthesis in phospholipase A2-treated rat lung microsomes. J. Biol. Chem. 257, 8907-8911. https://doi.org/10.1016/S0021-9258(18)34218-2
  26. Plouhar, P.L. and Bretthauer, R.K. (1983). Restoration by phospholipids of dolichol pyrophosphate N-acetylglucosamine synthesis in delipidated rat lung microsomes. J. Biol. Chem. 258, 12988-12993. https://doi.org/10.1016/S0021-9258(17)44069-5
  27. Price, N.P. and Momany, F.A. (2005). Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 15, 29R-42R. https://doi.org/10.1093/glycob/cwi065
  28. Ramazi, S., Allahverdi, A., and Zahiri, J. (2020). Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J. Biosci. 45, 135.
  29. Takatsuki, A., Arima, K., and Tamura, G. (1971). Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J. Antibiot. (Tokyo) 24, 215-223. https://doi.org/10.7164/antibiotics.24.215
  30. Tkacz, J.S. and Lampen, O. (1975). Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem. Biophys. Res. Commun. 65, 248-257. https://doi.org/10.1016/S0006-291X(75)80086-6
  31. Wang, R., Steensma, D.H., Takaoka, Y., Yun, J.W., Kajimoto, T., and Wong, C.H. (1997). A search for pyrophosphate mimics for the development of substrates and inhibitors of glycosyltransferases. Bioorg. Med. Chem. 5, 661-672. https://doi.org/10.1016/S0968-0896(97)00005-9
  32. Wang, Y., Zhang, L., He, Z., Deng, J., Zhang, Z., Liu, L., Ye, W., and Liu, S. (2020). Tunicamycin induces ER stress and inhibits tumorigenesis of head and neck cancer cells by inhibiting N-glycosylation. Am. J. Transl. Res. 12, 541-550.
  33. Wu, J., Chen, S., Liu, H., Zhang, Z., Ni, Z., Chen, J., Yang, Z., Nie, Y., and Fan, D. (2018). Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation. J. Exp. Clin. Cancer Res. 37, 272.
  34. Wu, X., Rush, J.S., Karaoglu, D., Krasnewich, D., Lubinsky, M.S., Waechter, C.J., Gilmore, R., and Freeze, H.H. (2003). Deficiency of UDP-GlcNAc:Dolichol Phosphate N-Acetylglucosamine-1 Phosphate Transferase (DPAGT1) causes a novel congenital disorder of Glycosylation Type Ij. Hum. Mutat. 22, 144-150. https://doi.org/10.1002/humu.10239
  35. Wurde, A.E., Reunert, J., Rust, S., Hertzberg, C., Haverkamper, S., Nurnberg, G., Nurnberg, P., Lehle, L., Rossi, R., and Marquardt, T. (2012). Congenital disorder of glycosylation type Ij (CDG-Ij, DPAGT1-CDG): extending the clinical and molecular spectrum of a rare disease. Mol. Genet. Metab. 105, 634-641. https://doi.org/10.1016/j.ymgme.2012.01.001
  36. Xu, L., Appell, M., Kennedy, S., Momany, F.A., and Price, N.P. (2004). Conformational analysis of chirally deuterated tunicamycin as an active site probe of UDP-N-acetylhexosamine:polyprenol-P N-acetylhexosamine-1-P translocases. Biochemistry 43, 13248-13255. https://doi.org/10.1021/bi048327q
  37. Yoo, J., Mashalidis, E.H., Kuk, A.C.Y., Yamamoto, K., Kaeser, B., Ichikawa, S., and Lee, S.Y. (2018). GlcNAc-1-P-transferase-tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nat. Struct. Mol. Biol. 25, 217-224. https://doi.org/10.1038/s41594-018-0031-y
  38. Zhao, G., Kang, J., Xu, G., Wei, J., Wang, X., Jing, X., Zhang, L., Yang, A., Wang, K., Wang, J., et al. (2020). Tunicamycin promotes metastasis through upregulating endoplasmic reticulum stress induced GRP78 expression in thyroid carcinoma. Cell Biosci. 10, 115.