DOI QR코드

DOI QR Code

Mercury poisoning in Eurasian river otter (Lutra lutra)

  • Gyurae Kim (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Sangjin Ahn (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Sang-Joon Lee (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Ba-Ra-Da Koh (Health & Environment Research Institute of Gwangju) ;
  • Soo-Young Choi (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Ho-Seong Cho (College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University) ;
  • Yeonsu Oh (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • 투고 : 2023.04.14
  • 심사 : 2023.05.08
  • 발행 : 2023.06.30

초록

An adult male Eurasian river otter (Lutra lutra) with ataxia and lethargy was rescued. Through the necropsy of this otter with neurological symptoms, a broad range of vascular damage caused by mercury toxicity in several organs, hepatocellular necrosis, and vacuolation in the brain. In mercury examination, liver, kidney, and hair showed values of 0.878 ± 0.027, 1.807 ± 0.049, and 5.712 ± 0.102 ㎍/g, respectively. Compared with certified reference material, it was confirmed that the concentration of mercury were 6.7 times, 13.7 times, and 43.3 times higher, respectively. When the symptoms and diagnosis results were comprehensively reviewed, this otter's demise was revealed due to mercury poisoning. The mercury concentration in the liver does not exceed the lowest observed effect level of 3.4 ㎍/g. However, even at low concentrations, long-term accumulation can cause symptoms including neuropathy, and the possibility that these heavy metals have accumulated in other wild animals cannot be ruled out. It seems that continuous monitoring using sentinel animals is necessary.

키워드

과제정보

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Animal Disease Management Technology Advancement Support Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Project No. 122013-2).

참고문헌

  1. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12:643972. https://doi.org/10.3389/fphar.2021.643972.
  2. Baos R, Cabezas S, Gonzalez MJ, Jimenez B, Delibes M. Eurasian otter (Lutra lutra) as sentinel species for the long-term biomonitoring of the Guadiamar River after the Aznalcollar mine spill. Sci Total Environ. 2022;802:149669. https://doi.org/10.1016/j.scitotenv.2021.149669.
  3. Basu N, Scheuhammer AM, Bursian SJ, Elliott J, Rouvinen-Watt K, Chan HM. Mink as a sentinel species in environmental health. Environ Res. 2007;103(1):130-44. https://doi.org/10.1016/j.envres.2006.04.005.
  4. Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina N, Klenavic K, Evans RD, et al. Methylmercury impairs components of the cholinergic system in captive mink (Mustela vison). Toxicol Sci. 2006;91(1):202-9. https://doi.org/10.1093/toxsci/kfj121.
  5. Boening DW. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 2000;40(12):1335-51. https://doi.org/10.1016/s0045-6535(99)00283-0.
  6. Chan HM, Scheuhammer AM, Ferran A, Loupelle C, Holloway J, Weech S. Impacts of mercury on freshwater fish-eating wildlife and humans. Hum Ecol Risk Assess. 2003;9(4):867-83. https://doi.org/10.1080/713610013.
  7. Cho HS, Lee SJ, Lee Y, Oh Y. Incidental finding of hemolymph nodes in a Holstein cow (Bos taurus taurus) with coccidiosis. Korean J Vet Serv. 2023;46(1):81-85. https://doi.org/10.7853/kjvs.2023.46.1.81.
  8. Dibbern M, Elmeros M, Dietz R, Sondergaard J, Michelsen A, Sonne C. Mercury exposure and risk assessment for Eurasian otters (Lutra lutra) in Denmark. Chemosphere. 2021;272:129608. https://doi.org/10.1016/j.chemosphere.2021.129608.
  9. Dietz R, Born EW, Riget F, Aubail A, Sonne C, Drimmie R, et al. Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ Sci Technol. 2011;45(4):1458-65. https://doi.org/10.1021/es1028734.
  10. Dietz R, Outridge PM, Hobson KA. Anthropogenic contributions to mercury levels in present-day Arctic animals--a review. Sci Total Environ. 2009;407(24):6120-31. https://doi.org/10.1016/j.scitotenv.2009.08.036.
  11. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013;47(10):4967-83. https://doi.org/10.1021/es305071v.
  12. Ebinghaus R, Tripathi RM, Wallschlager D, Lindberg SE. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W, editors. Mercury contaminated sites: characterization, risk assessment and remediation. Berlin: Springer; 1999. p. 3-50.
  13. Eto K, Yasutake A, Miyamoto K, Tokunaga H, Otsuka Y. Chronic effects of methylmercury in rats. II. Pathological aspects. Tohoku J Exp Med. 1997;182(3):197-205. https://doi.org/10.1620/tjem.182.197.
  14. Farina M, Rocha JB, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 2011;89(15-16):555-63. https://doi.org/10.1016/j.lfs.2011.05.019.
  15. Fernandes Azevedo B, Barros Furieri L, Pecanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simoes M, et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. 2012;2012:949048. https://doi.org/10.1155/2012/949048.
  16. Fusillo R, Romanucci M, Marcelli M, Massimini M, Della Salda L. Health and mortality monitoring in threatened mammals: a first post mortem study of otters (Lutra lutra L.) in Italy. Animals (Basel). 2022;12(5):609. https://doi.org/10.3390/ani12050609.
  17. Gao Z, Wu N, Du X, Li H, Mei X, Song Y. Toxic nephropathy secondary to chronic mercury poisoning: clinical characteristics and outcomes. Kidney Int Rep. 2022;7(6):1189-97. https://doi.org/10.1016/j.ekir.2022.03.009.
  18. Gworek B, Dmuchowski W, Baczewska-Dabrowska AH. Mercury in the terrestrial environment: a review. Environ Sci Eur. 2020;32:128. https://doi.org/10.1186/s12302-020-00401-x.
  19. Heinz GH. Mercury poisoning in wildlife. In: Fairbrother A, Locke LN, Hoff GL, editors. Noninfectious diseases of wildlife. 2nd ed. Ames: Iowa State University Press; 1996. p. 118-27.
  20. Hung N, Law CJ. Lutra lutra (Carnivora: Mustelidae). Mamm Species. 2016;48(940):109-22. https://doi.org/10.1093/mspecies/sew011.
  21. Kessler R. The Minamata Convention on Mercury: a first step toward protecting future generations. Environ Health Perspect. 2013;121(10):A304-9. https://doi.org/10.1289/ehp.121-A304.
  22. Klenavic K, Champoux L, Mike O, Daoust PY, Evans RD, Evans HE. Mercury concentrations in wild mink (Mustela vison) and river otters (Lontra canadensis) collected from eastern and Atlantic Canada: relationship to age and parasitism. Environ Pollut. 2008;156(2):359-66. https://doi.org/10.1016/j.envpol.2008.02.003.
  23. Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol. 2013;47(23):13385-94. https://doi.org/10.1021/es403103t.
  24. Mergler D, Anderson HA, Chan LH, Mahaffey KR, Murray M, Sakamoto M, et al. Methylmercury exposure and health effects in humans: a worldwide concern. Ambio. 2007;36(1):3-11. https://doi.org/10.1579/0044-7447(2007)36[3:meahei]2.0.co;2.
  25. Omanwar S, Fahim M. Mercury exposure and endothelial dysfunction: an interplay between nitric oxide and oxidative stress. Int J Toxicol. 2015;34(4):300-7. https://doi.org/10.1177/1091581815589766.
  26. Peterson EK, Schulte BA. Impacts of pollutants on beavers and otters with implications for ecosystem ramifications. J Contemp Water Res Educ. 2016;157:33-45. https://doi.org/10.1111/j.1936-704X.2016.03212.x.
  27. Raffee LA, Alawneh KZ, Alassaf RA, Alzoubi A, Alshehabat MA, Alabdallah N, et al. Effects of elemental mercury vapor inhalation on arterial blood gases, lung histology, and interleukin-1 expression in pulmonary tissues of rats. ScientificWorldJournal. 2021;2021:4141383. https://doi.org/10.1155/2021/4141383.
  28. Science for Environment Policy. Tackling mercury pollution in the EU and worldwide. Bristol: University of the West of England, Science Communication Unit; 2017.
  29. Takahashi T, Shimohata T. Vascular dysfunction induced by mercury exposure. Int J Mol Sci. 2019;20(10):2435. https://doi.org/10.3390/ijms20102435.
  30. Ullrich SM, Tanton TW, Abdrashitova SA. Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol. 2001;31(3):241-93. https://doi.org/10.1080/20016491089226.
  31. Verma RK, Sankhla MS, Kumar R. Mercury contamination in water & its impact on public health. Int J Forensic Sci. 2018;1(2):72-8.
  32. Yahyazedeh A, Altunkaynak BZ, Akgul N, Akgul HM. A histopathological and stereological study of liver damage in female rats caused by mercury vapor. Biotech Histochem. 2017;92(5):338-46. https://doi.org/10.1080/10520295.2017.1312527.
  33. Yates DE, Mayack DT, Munney K, Evers DC, Major A, Kaur T, et al. Mercury levels in mink (Mustela vison) and river otter (Lontra canadensis) from northeastern North America. Ecotoxicology. 2005;14(1-2):263-74. https://doi.org/10.1007/s10646-004-6273-y.