DOI QR코드

DOI QR Code

High ranavirus infection rates at low and extreme temperatures in the tadpoles of Japanese treefrogs (Dryophytes japonicus) that breed in rice paddies in the summer

  • Nam-Ho Roh (Department of Biological Sciences, Kangwon National University) ;
  • Jongsun Kim (Division of Science Education, Kangwon National University) ;
  • Jaejin Park (Division of Science Education, Kangwon National University) ;
  • Daesik Park (Division of Science Education, Kangwon National University)
  • 투고 : 2023.03.23
  • 심사 : 2023.05.02
  • 발행 : 2023.06.30

초록

Background: Several species of amphibians in agricultural areas are often infected with ranaviruses; however, the biological or ecological factors that cause this infection are not well understood. In this study, we investigated whether local tadpole density, Gosner developmental stage, and weather conditions affected ranavirus infection in Dryophytes japonicus tadpoles in rice paddies over three months. Results: During the study, eight samplings were undertaken between June 6 and August 21, 2022. No die-off of tadpoles occurred, but 20 of 110 tadpoles (18.8%) were found to be infected with ranavirus. The tadpole density at the sampling site and Gosner stage of the sampled tadpoles were not related to the daily ranavirus infection rate. The mean daily highest temperature during the two weeks prior to the sampling date and the mean daily lowest and highest temperatures during the week prior to the sampling date were negatively related to the daily infection rate. Conclusions: Our results suggest that low and extreme temperatures caused by flooding and draining of paddy fields or climate change in summer could be a significant risk factor for ranavirus infection in summer-breeding frogs in agricultural areas.

키워드

과제정보

We thank Hyerim Kwon, Min-Woo Park, and Hojun Jeong for their help during the dissection.

참고문헌

  1. Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341(6145):514-9. https://doi.org/10.1126/science.1239401. 
  2. Ariel E, Nicolajsen N, Christophersen MB, Holopainen R, Tapiovaara H, Jensen BB. Propagation and isolation of ranaviruses in cell culture. Aquaculture. 2009;294(3-4):159-64. https://doi.org/10.1016/j.aquaculture.2009.05.019. 
  3. Bartlett PL, Ward TM, Brue DE, Carey AK, Duffus ALJ. Ranaviruses in North America: a brief review in wild herpetofauna. J N Am Herpetol. 2021;2021(2):19-26.  https://doi.org/10.17161/jnah.v2021i2.15747
  4. Bayley AE, Hill BJ, Feist SW. Susceptibility of the European common frog Rana temporaria to a panel of ranavirus isolates from fish and amphibian hosts. Dis Aquat Organ. 2013;103(3):171-83. https://doi.org/10.3354/dao02574. 
  5. Borzee A, Heo K, Jang Y. Relationship between agro-environmental variables and breeding Hylids in rice paddies. Sci Rep. 2018;8(1):8049. https://doi.org/10.1038/s41598-018-26222-w. 
  6. Brand MD, Hill RD, Brenes R, Chaney JC, Wilkes RP, Grayfer L, et al. Water temperature affects susceptibility to ranavirus. Ecohealth. 2016;13(2):350-9. https://doi.org/10.1007/s10393-016-1120-1. 
  7. Brunner JL, Olson DH, Gray MJ, Miller DL, Duffus ALJ. Global patterns of ranavirus detections. Facets. 2021;6:912-24. https://doi.org/10.1139/facets-2020-0013. 
  8. Brunner JL, Schock DM, Collins JP. Transmission dynamics of the amphibian ranavirus Ambystoma tigrinum virus. Dis Aquat Organ. 2007;77(2):87-95. https://doi.org/10.3354/dao01845. 
  9. Brunner JL, Storfer A, Gray MJ, Hoverman JT. Ranavirus ecology and evolution: from epidemiology to extinction. In: Gray M, Chinchar V, editors. Ranaviruses: lethal pathogens of ectothermic vertebrates. Cham: Springer; 2015. p. 71-104. 
  10. Carey C, Cohen N, Rollins-Smith L. Amphibian declines: an immunological perspective. Dev Comp Immunol. 1999;23(6):459-72. https://doi.org/10.1016/s0145-305x(99)00028-2. 
  11. Cohen JM, Sauer EL, Santiago O, Spencer S, Rohr JR. Divergent impacts of warming weather on wildlife disease risk across climates. Science. 2020;370(6519):eabb1702. https://doi.org/10.1126/science.abb1702. 
  12. Daszak P, Cunningham AA, Hyatt AD. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001;78(2):103-16. https://doi.org/10.1016/s0001-706x(00)00179-0. 
  13. Davis DR, Ferguson KJ, Schwarz MS, Kerby JL. Effects of agricultural pollutants on stress hormones and viral infection in larval salamanders. Wetlands. 2020;40(3):577-86. https://doi.org/10.1007/s13157-019-01207-1. 
  14. Duffus ALJ, Waltzek TB, Stohr AC, Allender MC, Gotesman M, Whittington RJ, et al. Distribution and host range of ranaviruses. In: Gray M, Chinchar V, editors. Ranaviruses: lethal pathogens of ectothermic vertebrates. Cham: Springer; 2015. p. 9-57. 
  15. Galex IA, Gallant CM, D'Avignon N, Kuchenbrod LM, Fletcher CA, Rogala AR. Evaluation of effective and practical euthanasia methods for larval African clawed frogs (Xenopus laevis). J Am Assoc Lab Anim Sci. 2020;59(3):269-74. https://doi.org/10.30802/aalas-jaalas-19-000141. 
  16. Gosner KL. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 1960;16(3):183-90. 
  17. Gray MJ, Miller DL, Schmutzer AC, Baldwin CA. Frog virus 3 prevalence in tadpole populations inhabiting cattle-access and non-access wetlands in Tennessee, USA. Dis Aquat Organ. 2007;77(2):97-103. https://doi.org/10.3354/dao01837. 
  18. Greer AL, Berrill M, Wilson PJ. Five amphibian mortality events associated with ranavirus infection in south central Ontario, Canada. Dis Aquat Organ. 2005;67(1-2):9-14. https://doi.org/10.3354/dao067009. 
  19. Haislip NA, Gray MJ, Hoverman JT, Miller DL. Development and disease: how susceptibility to an emerging pathogen changes through anuran development. PLoS One. 2011;6(7):e22307. https://doi.org/10.1371/journal.pone.0022307. 
  20. Hall EM, Goldberg CS, Brunner JL, Crespi EJ. Seasonal dynamics and potential drivers of ranavirus epidemics in wood frog populations. Oecologia. 2018;188(4):1253-62. https://doi.org/10.1007/s00442-018-4274-4. 
  21. Herath J, Ellepola G, Meegaskumbura M. Patterns of infection, origins, and transmission of ranaviruses among the ectothermic vertebrates of Asia. Ecol Evol. 2021;11(22):15498-519. https://doi.org/10.1002/ece3.8243. 
  22. Hoverman JT, Gray MJ, Haislip NA, Miller DL. Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses. Ecohealth. 2011;8(3):301-19. https://doi.org/10.1007/s10393-011-0717-7. 
  23. Humphries JE, Lanctot CM, Robert J, McCallum HI, Newell DA, Grogan LF. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. Dev Comp Immunol. 2022;136:104510. https://doi.org/10.1016/j.dci.2022.104510. 
  24. Kamruzzaman M, Hwang S, Choi SK, Cho J, Song I, Song J, et al. Evaluating the impact of climate change on paddy water balance using APEX-paddy model. Water. 2020;12(3):852. https://doi.org/10.3390/w12030852. 
  25. Kim J, Roh NH, Park J, Park D. Comparison of detective ranavirus with major capsid protein gene from infected frogs (Pelophylax nigromaculatus and Lithobates catesbeianus) in South Korea. J Ecol Environ. 2022;46(4):276-81. https://doi.org/10.5141/jee.22.051. 
  26. Kim S, Sim MY, Eom AH, Park D, Ra NY. PCR detection of ranavirus in gold-spotted pond frogs (Rana plancyi chosenica) from Korea. Korean J Environ Biol. 2009;27(1):110-3. 
  27. Kimble SJ, Karna AK, Johnson AJ, Hoverman JT, Williams RN. Mosquitoes as a potential vector of ranavirus transmission in terrestrial turtles. Ecohealth. 2015;12(2):334-8. https://doi.org/10.1007/s10393-014-0974-3. 
  28. Kwon S, Park J, Choi WJ, Koo KS, Lee JG, Park D. First case of ranavirus-associated mass mortality in a natural population of the Huanren frog (Rana huanrenensis) tadpoles in South Korea. Anim Cells Syst. 2017;21(5):358-64. https://doi.org/10.1080/19768354.2017.1376706. 
  29. Lee JH, Park D. The encyclopedia of Korean amphibians. Seoul: Nature and Ecology; 2016.
  30. Loman J. Natural density regulation in tadpoles of the moor frog Rana arvalis - preliminary report of a field experiment -. Herpetol Bonn. 1997;1997:247-55. 
  31. Millikin AR, Davis DR, Brown DJ, Woodley SK, Coster S, Welsh A, et al. Prevalence of ranavirus in spotted salamander (Ambystoma maculatum) larvae from created vernal pools in West Virginia, USA. J Wildl Dis. 2023;59(1):24-36. https://doi.org/10.7589/jwd-d-22-00032. 
  32. Park IK, Koo KS, Moon KY, Lee JG, Park D. PCR detection of ranavirus from dead Kaloula borealis and sick Hyla japonica tadpoles in the wild. Korean J Herpetol. 2017;8(1):10-4. 
  33. Park J, Grajal-Puche A, Roh NH, Park IK, Ra NY, Park D. First detection of ranavirus in a wild population of Dybowski's brown frog (Rana dybowskii) in South Korea. J Ecol Environ 2021;45:2. https://doi.org/10.1186/s41610-020-00179-2. 
  34. Peace A, O'Regan SM, Spatz JA, Reilly PN, Hill RD, Carter ED, et al. A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways. Ecol Model. 2019;410:108777. https://doi.org/10.1016/j.ecolmodel.2019.108777. 
  35. Roh N, Park J, Kim J, Kwon H, Park D. Prevalence of ranavirus infection in three anuran species across South Korea. Viruses. 2022;14(5):1073. https://doi.org/10.3390/v14051073. 
  36. Tegegne G, Melesse AM, Worqlul AW. Development of multi-model ensemble approach for enhanced assessment of impacts of climate change on climate extremes. Sci Total Environ. 2020;704:135357. https://doi.org/10.1016/j.scitotenv.2019.135357. 
  37. Zhang QY, Li ZQ, Jiang YL, Liang SC, Gui JF. Preliminary studies on virus isolation and cell infection from disease frog Rana grylio. Acta Hydrobiol Sin. 1996;20(4):390-2.