DOI QR코드

DOI QR Code

Comparison of overwintering potential of seeds in laboratory and field conditions for the risk assessment of transgenic plants: a sunflower case study

  • Sung Min Han (Division of Ecological Safety, National Institute of Ecology) ;
  • Seong-Jun Chun (Division of Ecological Safety, National Institute of Ecology) ;
  • Kyong-Hee Nam (Division of Ecological Safety, National Institute of Ecology)
  • Received : 2023.03.07
  • Accepted : 2023.03.27
  • Published : 2023.06.30

Abstract

Background: An important consideration for the risk assessment of transgenic plants is their overwintering potential in a natural ecosystem, which allows the survival of the seed bank and may lead to seed reproduction. Here, we investigated the overwintering of sunflower (Helianthus annuus L.) seeds in the laboratory (temperatures: -5, -1, 5, and 10℃) and in the field (burial depth: 0, 5, 15, and 30 cm) as a case study to examine the invasiveness of transgenic crops. Results: Sunflower seeds germinated when incubated at 5℃ and 10℃ for 2, 4, 6, and 12 weeks but not when incubated at -5℃ or -1℃. However, the seeds incubated at -5℃ or -1℃ germinated when they were transferred to the optimal germination temperature (25℃). Up to 16.5% and 15.0% of seeds were dormant when cultured at sub-zero temperatures in a Petri dish containing filter paper and soil, respectively. In the field trial, soil temperature, moisture, and microbial communities differed significantly between soil depths. Germination-related microorganisms were more distributed on the soil surface. Seeds buried on the surface decayed rapidly from 4 weeks after burial, whereas those buried at depths of 15 cm and 30 cm germinated even 16 weeks after burial. No dormancy was detected for seeds buried at any depth. Conclusions: Although sunflower seeds did not overwinter in situ in this study, we cannot exclude the possibility that these seeds lie dormant at sub-zero temperatures and then germinate at optimal temperatures in nature.

Keywords

Acknowledgement

This research was supported by the National Institute of Ecology (NIE) and funded by the Ministry of Environment (MOE) of the Republic of Korea (NIE-A-2023-04).

References

  1. Adhikari P, Jeon JY, Kim HW, Shin MS, Adhikari P, Seo C. Potential impact of climate change on plant invasion in the Republic of Korea. J Ecol Environ. 2019;43:36. https://doi.org/10.1186/s41610-019-0134-3. 
  2. Aikio S, Ranta E, Kaitala V, Lundberg P. Seed bank in annuals: competition between banker and non-banker morphs. J Theor Biol. 2002; 217(3):341-9. https://doi.org/10.1006/jtbi.2002.3034. 
  3. Alexander HM, Schrag AM. Role of soil seed banks and newly dispersed seeds in population dynamics of the annual sunflower, Helianthus annuus. J Ecol. 2003;91(6):987-98. https://doi.org/10.1046/j.1365-2745.2003.00824.x. 
  4. Andersson MS, de Vicente MC. Gene flow between crops and their wild relatives. Baltimore: Johns Hopkins University Press; 2010. 
  5. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH, Emerson D. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. mBio. 2020;11(1):e02475-19. https://doi. org/10.1128/mBio.02475-19. 
  6. Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolution of dormancy and germination. Burlington: Elsevier Science; 2014. 
  7. Baskin JM, Baskin CC. A classification system for seed dormancy. Seed Sci Res. 2004;14(1):1-16. https://doi.org/10.1079/SSR2003150. 
  8. Billings WD, Mooney HA. The ecology of arctic and alpine plants. Biol Rev. 1968;43(4):481-529. https://doi.org/10.1111/j.1469-185X.1968.tb00968.x. 
  9. Burton MG, Mortensen DA, Marx DB, Lindquist JL. Factors affecting the realized niche of common sunflower (Helianthus annuus) in ridge-tillage corn. Weed Sci. 2004;52(5):779-87.  https://doi.org/10.1614/P2001-101
  10. Cantamutto M, Poverene M. Genetically modified sunflower release: opportunities and risks. Field Crops Res. 2007;101(2):133-44. https:// doi.org/10.1016/j.fcr.2006.11.007. 
  11. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol. 2010;76(4):999-1007. https://doi. org/10.1128/AEM.02874-09. 
  12. Davison J. GM plants: science, politics and EC regulations. Plant Sci. 2010;178(2):94-8. https://doi.org/10.1016/j.plantsci.2009.12.005. 
  13. EFSA Panel on Genetically Modified Organisms (GMO). Guidance on the environmental risk assessment of genetically modified plants. EFSA J. 2010;8(11):1879. https://doi.org/10.2903/j.efsa.2010.1879. 
  14. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, et al. Observed climate variability and change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, et al, editors. Climate change 2001: the scientific basis. Cambridge: Cambridge University Press; 2001. p. 99-182. 
  15. Gay C, Corbineau F, Come D. Effects of temperature and oxygen on seed germination and seedling growth in sunflower (Helianthus annuus L.). Environ Exp Bot. 1991;31(2):193-200. https://doi.org/10.1016/0098-8472(91)90070-5. 
  16. Geneve RL. Impact of temperature on seed dormancy. HortScience. 2003;38(3):336-41.  https://doi.org/10.21273/HORTSCI.38.3.336
  17. Han SM, Nam KH. Assessing the potential invasiveness of transgenic plants in South Korea: a three-year case study on sunflowers. J Ecol Environ. 2022;46:19. https://doi.org/10.5141/jee.22.039. 
  18. Hill R, Sendashonga C. Conservation biology, genetically modified organisms, and the biosafety protocol. Conserv Biol. 2006;20(6):1620-5. https://doi.org/10.1111/j.1523-1739.2006.00534.x. 
  19. Hill RA, Sendashonga C. General principles for risk assessment of living modified organisms: lessons from chemical risk assessment. Environ Biosafety Res. 2003;2(2):81-8. https://doi.org/10.1051/ebr:2003004. 
  20. Hong SH, Lee YH, Lee G, Lee DH, Adhikari P. Predicting impacts of climate change on northward range expansion of invasive weeds in South Korea. Plants (Basel). 2021;10(8):1604. https://doi.org/10.3390/plants10081604. 
  21. Howden SM, Soussana JF, Tubiello FN, Chhetri N, Dunlop M, Meinke H. Adapting agriculture to climate change. Proc Natl Acad Sci U S A. 2007;104(50):19691-6. https://doi.org/10.1073/pnas.0701890104. 
  22. ISTA (International Seed Testing Association). International rules for seed testing: edition 2010. Bassersdorf: International Seed Testing Association; 2010. 
  23. Karuppaiah V, Sujayanad GK. Impact of climate change on population dynamics of insect pests. World J Agric Sci. 2012;8(3):240-6. 
  24. KBCH (Korea Biosafety Clearing House). Import and Export Status. 2022. https://www.biosafety.or.kr/portal/page/f_03. Accessed 12 Oct 2022. 
  25. Kim IR, Lim HS, Choi W, Kang DI, Lee SY, Lee JR. Monitoring living modified canola using an efficient multiplex PCR assay in natural environments in South Korea. Appl Sci. 2020;10(21):7721. https://doi.org/10.3390/app10217721. 
  26. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64(Pt 2):346-51. https://doi.org/10.1099/ijs.0.059774-0. Erratum in: Int J Syst Evol Microbiol. 2014;64(Pt 5):1825. 
  27. KMA (Korea Meteorological Administration). Korean Climate Change Assessment report 2020: the physical science basis. Seoul: Korea Meteorological Administration; 2020. 
  28. KMA (Korea Meteological Administration). Synoptic Weather Observation, Statistics by Condition. 2022. https://data.kma.go.kr. Accessed 12 Oct 2022. 
  29. Ko EM, Kim DY, Kim HJ, Chung YS, Kim CG. Assessing weediness of herbicide tolerant genetically modified soybean. Korean J Agric Sci. 2016 43(4):560-6. https://doi.org/10.7744/kjoas.20160057. 
  30. Koo KA, Kong WS, Nibbelink NP, Hopkinson CS, Lee JH. Potential effects of climate change on the distribution of cold-tolerant evergreen broadleaved woody plants in the Korean peninsula. PLoS One. 2015;10(8):e0134043. https://doi.org/10.1371/journal.pone.0134043. 
  31. Kouam EB, Pasquet RS, Campagne P, Tignegre JB, Thoen K, Gaudin R, et al. Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant Biol. 2012;12:113. https://doi. org/10.1186/1471-2229-12-113. 
  32. Lamichhane JR, Debaeke P, Steinberg C, You MP, Barbetti MJ, Aubertot JN. Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant Soil. 2018;432: 1-28. https://doi.org/10.1007/s11104-018-3780-9. 
  33. Lee HK, Lee SJ, Kim MK, Lee SD. Prediction of plant phenological shift under climate change in South Korea. Sustainability. 2020;12(21): 9276. https://doi.org/10.3390/su12219276. 
  34. Lee HW, Yoon SR, Dang YM, Kang M, Lee KH, Ha JH, et al. Ultramicrobacteria in various fermented cabbages. BioRxiv. 477936 [Preprint]. 2022 [cited 2022 Oct 12]. Available from: https://doi.org/10.1101/2022.01.26.477936. 
  35. Lezcano MA, Velazquez D, Quesada A, El-Shehawy R. Diversity and temporal shifts of the bacterial community associated with a toxic cyanobacterial bloom: an interplay between microcystin producers and degraders. Water Res. 2017;125:52-61. https://doi.org/10.1016/j.watres.2017.08.025. 
  36. Liang C, Prins TW, Van De Wiel CCM, Kok EJ. Safety aspects of genetically modified crops with abiotic stress tolerance. Trends Food Sci Technol. 2014;40(1):115-22. https://doi.org/10.1016/j.tifs.2014.08.005. 
  37. Lim HS, Kim IR, Lee S, Choi W, Yoon AM, Lee JR. Establishment and application of a monitoring strategy for living modified cotton in natural environments in South Korea. Appl Sci. 2021;11(21):10259. https://doi.org/10.3390/app112110259. 
  38. Long RL, Gorecki MJ, Renton M, Scott JK, Colville L, Goggin DE, et al. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biol Rev Camb Philos Soc. 2015;90(1):31-59. https://doi.org/10.1111/brv.12095. 
  39. Mcdonald A, Riha S, Ditommaso A, Degaetano A. Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agric Ecosyst Environ. 2009;130(3-4):131-40. https://doi.org/10.1016/j.agee.2008.12.007. 
  40. McGraw JB, Vavrek MC, Bennington CC. Ecological genetic variation in seed banks I. Establishment of a time transect. J Ecol. 1991;79(3): 617-25. https://doi.org/10.2307/2260657. 
  41. Nam KH, Han SM. Seed germination of sunflower as a case study for the risk assessment and management of transgenic plants used for environmental remediation in South Korea. Sustainability. 2020;12(23): 10110. https://doi.org/10.3390/su122310110. 
  42. NIAST (National Institute of Agricultural Sciences and Technology). Methods of soil and plant analysis. Suwon: National Institute of Agricultural Sciences and Technology; 2000. 
  43. Ooi MKJ, Auld TD, Denham AJ. Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Glob Chang Biol. 2009;15(10):2375-86. https://doi.org/10.1111/j.1365-2486.2009.01887.x. 
  44. Park KW, Lee B, Kim CG, Kim DY, Park JY, Ko EM, et al. Monitoring the occurrence of genetically modified maize at a grain receiving port and along transportation routes in the Republic of Korea. Food Control. 2010;21(4):456-61. https://doi.org/10.1016/j.foodcont.2009.07.006. 
  45. Patterson DT. Weeds in a changing climate. Weed Sci. 1995;43(4):685-701.  https://doi.org/10.1017/S0043174500081832
  46. Queiroz Rego CH, Cardoso FB, da Silva Candido AC, Teodoro PE, Alves CZ. Co-inoculation with Bradyrhizobium and Azospirillum increases yield and quality of soybean seeds. Agron J. 2018;110(6):2302-9. https://doi.org/10.2134/agronj2018.04.0278. 
  47. Ramesh K, Matloob A, Aslam F, Florentine SK, Chauhan BS. Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Front Plant Sci. 2017;8:95. https://doi.org/10.3389/fpls.2017.00095. 
  48. Shine C, Williams N, Gundling L. A guide to designing legal and institutional frameworks on alien invasive species. Gland: IUCN; 2000. 
  49. Slingo JM, Challinor AJ, Hoskins BJ, Wheeler TR. Introduction: food crops in a changing climate. Philos Trans R Soc Lond B Biol Sci. 2005;360(1463):1983-9. https://doi.org/10.1098/rstb.2005.1755. 
  50. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol. 1994;44(4):846-9. https://doi.org/10.1099/00207713-44-4-846. 
  51. Traba J, Azcarate F, Peco B. From what depth do seeds emerge? A soil seed bank experiment with Mediterranean grassland species. Seed Sci Res. 2004;14(3):297-303. https://doi.org/10.1079/SSR2004179. 
  52. Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P. Climate change and plant regeneration from seed. Glob Chang Biol. 2011; 17(6):2145-61. https://doi.org/10.1111/j.1365-2486.2010.02368.x. 
  53. Walther GR. Community and ecosystem responses to recent climate change. Philos Trans R Soc Lond B Biol Sci. 2010;365(1549):2019-24. https://doi.org/10.1098/rstb.2010.0021. 
  54. Xu WY, Wang ML, Sun XX, Shu CL, Zhang J, Geng LL. Peanut (Arachis hypogaea L.) pod and rhizosphere harbored different bacterial communities. Rhizosphere. 2021;19:100373. https://doi.org/10.1016/j.rhisph.2021.100373. 
  55. Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12(9):635-45. https://doi.org/10.1038/nrmicro3330. 
  56. Yook MJ, Park HR, Zhang CJ, Lim SH, Jeong SC, Chung YS, et al. Environmental risk assessment of glufosinate-resistant soybean by pollen-mediated gene flow under field conditions in the region of the genetic origin. Sci Total Environ. 2021;762:143073. https://doi.org/10.1016/j.scitotenv.2020.143073.