DOI QR코드

DOI QR Code

Enhancing generation efficiency of liver organoids in a collagen scaffold using human chemically derived hepatic progenitors

  • Myounghoi Kim (Department of Surgery, Hanyang University College of Medicine) ;
  • Yohan Kim (Max-Planck-Institute of Molecular Cell Biology and Genetics) ;
  • Elsy Soraya Salas Silva (Department of Surgery, Hanyang University College of Medicine) ;
  • Michael Adisasmita (Department of Surgery, Hanyang University College of Medicine) ;
  • Kyeong Sik Kim (Department of Surgery, Hanyang University College of Medicine) ;
  • Yun Kyung Jung (Department of Surgery, Hanyang University College of Medicine) ;
  • Kyeong Geun Lee (Department of Surgery, Hanyang University College of Medicine) ;
  • Ji Hyun Shin (Department of Surgery, Hanyang University College of Medicine) ;
  • Dongho Choi (Department of Surgery, Hanyang University College of Medicine)
  • Received : 2023.04.07
  • Accepted : 2023.06.08
  • Published : 2023.11.30

Abstract

Backgrounds/Aims: Liver organoids have emerged as a powerful tool for studying liver biology and disease and for developing new therapies and regenerative medicine approaches. For organoid culture, Matrigel, a type of extracellular matrix, is the most commonly used material. However, Matrigel cannot be used for clinical applications due to the presence of unknown proteins that can cause immune rejection, batch-to-batch variability, and angiogenesis. Methods: To obtain human primary hepatocytes (hPHs), we performed 2 steps collagenase liver perfusion protocol. We treated three small molecules cocktails (A83-01, CHIR99021, and HGF) for reprogramming the hPHs into human chemically derived hepatic progenitors (hCdHs) and used hCdHs to generate liver organoids. Results: In this study, we report the generation of liver organoids in a collagen scaffold using hCdHs. In comparison with adult liver (or primary hepatocyte)-derived organoids with collagen scaffold (hALO_C), hCdH-derived organoids in a collagen scaffold (hCdHO_C) showed a 10-fold increase in organoid generation efficiency with higher expression of liver- or liver progenitor-specific markers. Moreover, we demonstrated that hCdHO_C could differentiate into hepatic organoids (hCdHO_C_DM), indicating the potential of these organoids as a platform for drug screening. Conclusions: Overall, our study highlights the potential of hCdHO_C as a tool for liver research and presents a new approach for generating liver organoids using hCdHs with a collagen scaffold.

Keywords

Acknowledgement

This work was supported by grants (NRF-2022R1A2C2004593, NRF-2021M3A9H3015390, and NRF-2022R1F1A1073058) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (MSIT), Republic of Korea.

References

  1. Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet 2018;19:671-687. https://doi.org/10.1038/s41576-018-0051-9
  2. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordonez- Moran P, et al. Designer matrices for intestinal stem cell and organoid culture. Nature 2016;539:560-564. https://doi.org/10.1038/nature20168
  3. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 2015;160:299-312. https://doi.org/10.1016/j.cell.2014.11.050
  4. Miller AJ, Dye BR, Ferrer-Torres D, Hill DR, Overeem AW, Shea LD, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc 2019;14:518-540. https://doi.org/10.1038/s41596-018-0104-8
  5. Zeng Z, Huang B, Parvez RK, Li Y, Chen J, Vonk AC, et al. Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors. Nat Commun 2021;12:3641.
  6. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013;501:373-379. https://doi.org/10.1038/nature12517
  7. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126:677-689. https://doi.org/10.1016/j.cell.2006.06.044
  8. Suarez-Martinez E, Suazo-Sanchez I, Celis-Romero M, Carnero A. 3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell Biosci 2022;12:39.
  9. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005;15:378-386. https://doi.org/10.1016/j.semcancer.2005.05.004
  10. Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, et al. Generation of human vascularized brain organoids. Neuroreport 2018;29:588-593. https://doi.org/10.1097/WNR.0000000000001014
  11. Sodunke TR, Turner KK, Caldwell SA, Mcbride KW, Reginato MJ, Noh HM. Micropatterns of Matrigel for three-dimensional epithelial cultures. Biomaterials 2007;28:4006-4016. https://doi.org/10.1016/j.biomaterials.2007.05.021
  12. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009;459:262-265. https://doi.org/10.1038/nature07935
  13. Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 2010;10:1886-1890. https://doi.org/10.1002/pmic.200900758
  14. Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater 2020;5:539-551. https://doi.org/10.1038/s41578-020-0199-8
  15. Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 2010;5:628-635. https://doi.org/10.1038/nprot.2010.6
  16. Kleinman HK, Kim K, Kang H. Matrigel uses in cell biology and for the identification of thymosin β4, a mediator of tissue regeneration. Appl Biol Chem 2018;61:703-708. https://doi.org/10.1007/s13765-018-0400-6
  17. Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol 2021;4:1387.
  18. Schneeberger K, Spee B, Costa P, Sachs N, Clevers H, Malda J. Converging biofabrication and organoid technologies: the next frontier in hepatic and intestinal tissue engineering? Biofabrication 2017;9:013001.
  19. Kaur S, Kaur I, Rawal P, Tripathi DM, Vasudevan A. Non-matrigel scaffolds for organoid cultures. Cancer Lett 2021;504:58-66. https://doi.org/10.1016/j.canlet.2021.01.025
  20. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016;97:4-27. https://doi.org/10.1016/j.addr.2015.11.001
  21. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013;87:1315-1530. https://doi.org/10.1007/s00204-013-1078-5
  22. Kim Y, Kang K, Lee SB, Seo D, Yoon S, Kim SJ, et al. Small molecule- mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol 2019;70:97-107. https://doi.org/10.1016/j.jhep.2018.09.007
  23. Dunn JC, Tompkins RG, Yarmush ML. Hepatocytes in collagen sandwich: evidence for transcriptional and translational regulation. J Cell Biol 1992;116:1043-1053. https://doi.org/10.1083/jcb.116.4.1043
  24. Vondran FW, Katenz E, Schwartlander R, Morgul MH, Raschzok N, Gong X, et al. Isolation of primary human hepatocytes after partial hepatectomy: criteria for identification of the most promising liver specimen. Artif Organs 2008;32:205-213. https://doi.org/10.1111/j.1525-1594.2007.00524.x
  25. Conboy I, Freimer J, Weisenstein L, Liu Y, Mehdipour M, Gathwala R. 6.13 Tissue Engineering of Muscle Tissue☆. In: Ducheyne P, ed. Comprehensive Biomaterials II. Elsevier, 2017:216-235.
  26. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010;6:25-36. https://doi.org/10.1016/j.stem.2009.11.013
  27. Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE, Godfrey EM, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021;371:839-846. https://doi.org/10.1126/science.aaz6964
  28. Shinozawa T, Kimura M, Cai Y, Saiki N, Yoneyama Y, Ouchi R, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology 2021;160:831-846. e10. https://doi.org/10.1053/j.gastro.2020.10.002
  29. Sun L, Wang Y, Cen J, Ma X, Cui L, Qiu Z, et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat Cell Biol 2019;21:1015-1026. https://doi.org/10.1038/s41556-019-0359-5
  30. Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater 2012;8:3191-3200. https://doi.org/10.1016/j.actbio.2012.06.014
  31. Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, Zare M, Ramakrishna S. Collagen-based biomaterials for biomedical applications. J Biomed Mater Res B Appl Biomater 2021;109:1986-1999. https://doi.org/10.1002/jbm.b.34881