DOI QR코드

DOI QR Code

Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation

  • Xuefeng Zhong (Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China) ;
  • Shuai Che (Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China) ;
  • Congying Xie (Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China) ;
  • Lan Wu (Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China) ;
  • Xinyu Zhang (Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China) ;
  • Lin Tian (Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China) ;
  • Chan Liu (Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China) ;
  • Hongbo Li (National Marine Environmental Monitoring Center) ;
  • Guoying Du (Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China)
  • Received : 2023.01.07
  • Accepted : 2023.05.25
  • Published : 2023.06.21

Abstract

Light quality is a common environmental factor which influences the metabolism of biochemical substances in algae and leads to the response of algal growth and development. Pyropia yezoensis is a kind of economic macroalgae that naturally grows in the intertidal zone where the light environment changes dramatically. In the present study, P. yezoensis thalli were treated under white light (control) and monochromatic lights with primary colors (blue, green, and red) for 14 days to explore their physiological response to light quality. During the first 3 days of treatment, P. yezoensis grew faster under blue light than other light qualities. In the next 11 days, it showed better adaptation to green light, with higher growth rate and photosynthetic capacity (reflected by a higher rETRmax = 61.58 and Ek = 237.78). A higher non-photochemical quenching was observed in the treatment of red light than others for 14 days. Furthermore, the response of P. yezoensis to light quality also results in the difference of photosynthetic pigment contents. The monochromatic light could reduce the synthesis of all pigments, but the reduction degree was different, which may relate to the spectral absorption characteristics of pigments. It was speculated that P. yezoensis adapted to a specific or changing light environments by regulating the synthesis of pigments to achieve the best use of light energy in photosynthesis and premium growth and metabolism.

Keywords

Acknowledgement

This study was financially supported by National Key R&D Program of China (2022YFD2400105, 2020YFD0900702, 2020YFA0607600). We thank Prof. Ik Kyo Chung (Pusan National University, Korea) and Christine Dupuy (La Rochelle University, France) for their improvement of this manuscript.

References

  1. Adir, N. 2005. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth. Res. 85:15-32.  https://doi.org/10.1007/s11120-004-2143-y
  2. Aguilera, J., Francisco, J., Gordillo, L., Karsten, U., Figueroa, F. L. & Niell, F. X. 2000. Light quality effect on photosynthesis and efficiency of carbon assimilation in the red alga Porphyra leucosticta. J. Plant Physiol. 157:86-92.  https://doi.org/10.1016/S0176-1617(00)80140-6
  3. Aronoff, S. 1950. The absorption spectra of chlorophyll and related compounds. Chem. Rev. 47:175-195.  https://doi.org/10.1021/cr60147a001
  4. Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89-113.  https://doi.org/10.1146/annurev.arplant.59.032607.092759
  5. Barsanti, L., Evangelista, V., Frassanito, A. M., Vesentini, N., Passarelli, V. & Gualtieri, P. 2007. Absorption microspectroscopy, theory and applications in the case of the photosynthetic compartment. Micron 38:197-213.  https://doi.org/10.1016/j.micron.2006.07.015
  6. Barufi, J. B., Figueroa, F. L. & Plastino, E. M. 2015. Effects of light quality on reproduction, growth and pigment content of Gracilaria birdiae (Rhodophyta: Gracilariales). Sci. Mar. 79:15-24.  https://doi.org/10.3989/scimar.04049.12A
  7. Belkov, V. I., Garnik, E. Y. & Konstantinov, Y. M. 2019. Mechanism of plant adaptation to changing illumination by rearrangements of their photosynthetic apparatus. In Kochetov, A. & Salina, E. (Eds.) Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology (PlantGen2019): Proceedings of the Fifth International Scientific Conference. Novosibirsk State University Press, Novosibirsk, pp. 101-103. 
  8. Bhagooli, R., Mattan-Moorgawa, S., Kaullysing, D., Louis, Y. D., Gopeechund, A., Ramah, S., Soondur, M., Pilly, S. S., Beesoo, R., Wijayanti, D. P., Bachok, Z. B., Monras, V. C., Casareto, B. E., Suzuki, Y. & Baker, A. C. 2021. Chlorophyll fluorescence: a tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. Mar. Pollut. Bull. 165:112059. 
  9. Borlongan, I. A., Suzuki, S., Nishihara, G. N., Kozono, J. & Terada, R. 2020. Effects of light quality and temperature on the photosynthesis and pigment content of a subtidal edible red alga Meristotheca papulosa (Solieriaceae, Gigartinales) from Japan. J. Appl. Phycol. 32:1329-1340.  https://doi.org/10.1007/s10811-020-02045-z
  10. Butler, W. L. 1962. Effects of red and far-red light on the fluorescence yield of chlorophyll in vivo. Biochim. Biophys. Acta 64:309-317.  https://doi.org/10.1016/0006-3002(62)90739-4
  11. Cao, X., Wang, H., Zang, X., Liu, Z., Xu, D., Jin, Y., Zhang, F. & Wang, Z. 2021. Changes in the photosynthetic pigment contents and transcription levels of phycoerythrin-related genes in three Gracilariopsis lemaneiformis strains under different light intensities. J. Ocean Univ. 20:661-668.  https://doi.org/10.1007/s11802-021-4616-4
  12. Coe, R. A. & Lin, H. 2018. Light-response curves in land plants. In Covshoff, S. (Ed.) Methods in Molecular Biology. Vol. 1770. Humana Press, New York, pp. 83-94. 
  13. Dietzel, L., Brautigam, K. & Pfannschmidt, T. 2008. Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry: functional relationships between short-term and long-term light quality acclimation in plants. FEBS J. 275:1080-1088.  https://doi.org/10.1111/j.1742-4658.2008.06264.x
  14. Duppeti, H., Chakraborty, S., Das, B. S., Mallick, N. & Kotamreddy, J. N. R. 2017. Rapid assessment of algal biomass and pigment contents using diffuse reflectance spectroscopy and chemometrics. Algal Res. 27:274-285.  https://doi.org/10.1016/j.algal.2017.09.016
  15. Gantt, E. 1981. Phycobilisomes. Annu. Rev. Plant Physiol. 32:327-347.  https://doi.org/10.1146/annurev.pp.32.060181.001551
  16. Godinez-Ortega, J. L., Snoeijs, P., Robledo, D., Freile-Pelegrin, Y. & Pedersen, M. 2008. Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities. J. Appl. Phycol. 20:253-260.  https://doi.org/10.1007/s10811-007-9241-0
  17. Goedheer, J. C. 1969. Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim. Biophys. Acta 172:252-265.  https://doi.org/10.1016/0005-2728(69)90068-1
  18. Gong, J., Liu, Z. & Zou, D. 2020. Growth and photosynthetic characteristics of Gracilaria lemaneiformis (Rhodophyta) and Ulva lactuca (Chlorophyta) cultured under fluorescent light and different LED light. J. Appl. Phycol. 32:3265-3272.  https://doi.org/10.1007/s10811-020-02151-y
  19. Grossman, A. R., Bhaya, D., Apt, K. E. & Kehoe, D. M. 1995. Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annu. Rev. Genet. 29:231-288.  https://doi.org/10.1146/annurev.ge.29.120195.001311
  20. Hintz, N. H. 2021. Highlighting Theodor W. Engelmann's "Farbe und Assimilation" [Color and Assimilation]. Limnol. Oceanogr. Bull. 30:121-126.  https://doi.org/10.1002/lob.10470
  21. Johnson, M. P. 2016. Photosynthesis. Essays Biochem. 60:255-273.  https://doi.org/10.1042/EBC20160016
  22. Kim, J. K., Mao, Y., Kraemer, G. & Yarish, C. 2015. Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture 436:52-57.  https://doi.org/10.1016/j.aquaculture.2014.10.037
  23. Kirk, J. T. O. 1994. Light and photosynthesis in aquatic ecosystems. 3rd ed. Cambridge University Press, Cambridge, 649 pp. 
  24. Korbee, N., Figueroa, F. L. & Aguilera, J. 2005. Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J. Photochem. Photobiol. B Biol. 80:71-78.  https://doi.org/10.1016/j.jphotobiol.2005.03.002
  25. Kursar, T. A. & Alberte, R. S. 1983. Photosynthetic unit organization in a red alga: relationships between light-harvesting pigments and reaction centers. Plant Physiol. 72:409-414.  https://doi.org/10.1104/pp.72.2.409
  26. Lafarga-De la Cruz, F., Valenzuela-Espinoza, E., MillanNunez, R., Trees, C. C., Santamaria-del-Angel, E. & Nunez-Cebrero, F. 2006. Nutrient uptake, chlorophyll a and carbon fixation by Rhodomonas sp. (Cryptophyceae) cultured at different irradiance and nutrient concentrations. Aquac. Eng. 35:51-60.  https://doi.org/10.1016/j.aquaeng.2005.08.004
  27. Latsos, C., van Houcke, J., Blommaert, L., Verbeeke, G. P., Kromkamp, J. & Timmermans, K. R. 2021. Effect of light quality and quantity on productivity and phycoerythrin concentration in the cryptophyte Rhodomonas sp. J. Appl. Phycol. 33:729-741.  https://doi.org/10.1007/s10811-020-02338-3
  28. Litjens, R. A. J., Quickenden, T. I. & Freeman, C. G. 1999. Visible and near-ultraviolet absorption spectrum of liquid water. Appl. Optics 38:1216-1223.  https://doi.org/10.1364/AO.38.001216
  29. Lopez-Figueroa, F. & Niell, F. X. 1990. Effects of light quality on chlorophyll and biliprotein accumulation in seaweeds. Mar. Biol. 104:321-327. https://doi.org/10.1007/BF01313274
  30. MacColl, R. 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124:311-334.  https://doi.org/10.1006/jsbi.1998.4062
  31. Maxwell, K. & Johnson, G. N. 2000. Chlorophyll fluorescence: a practical guide. J. Exp. Bot. 51:659-668.  https://doi.org/10.1093/jexbot/51.345.659
  32. Morel, A., Gentili, B., Claustre, H., Babin, M., Bricaud, A., Ras, J. & Tieche, F. 2007. Optical properties of the "clearest" natural waters. Limnol. Oceanogr. 52:217-229.  https://doi.org/10.4319/lo.2007.52.1.0217
  33. Muller, P., Li, X. P. & Niyogi, K. K. 2001. Non-photochemical quenching: a response to excess light energy. Plant Physiol. 125:1558-1566. 
  34. Nakajima, Y. & Ueda, R. 1999. Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment. J. Appl. Phycol. 11:195-201.  https://doi.org/10.1023/A:1008015224029
  35. Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38:687-701. 
  36. Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In Watanabe, A. & Hattori, A. (Eds.) Cultures and Collections of Algae. Proceedings of the USJapan Conference. Japanese Society of Plant Physiology Press, Hakone, pp. 63-75. 
  37. Ralph, P. J. & Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82:222-237.  https://doi.org/10.1016/j.aquabot.2005.02.006
  38. Reiskind, J. B., Beer, S. & Bowes, G. 1989. Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquat. Bot. 34:131-152.  https://doi.org/10.1016/0304-3770(89)90053-3
  39. Schreiber, U., Gademann, R., Ralph, P. J. & Larkum, A. W. D. 1997. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol. 38:945-951.  https://doi.org/10.1093/oxfordjournals.pcp.a029256
  40. Stomp, M., Huisman, J., De Jongh, F., Veraart, A. J., Gerla, D., Rijkeboer, M., Ibelings, B. W., Wollenzien, U. I. A. & Stal, L. J. 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104-107.  https://doi.org/10.1038/nature03044
  41. Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H. -G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., MolsMortensen, A., Milstein, D. & Muller, K. M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J. Phycol. 47:1131-1151.  https://doi.org/10.1111/j.1529-8817.2011.01052.x
  42. Talarico, L. & Maranzana, G. 2000. Light and adaptive responses in red macroalgae: an overview. J. Photochem. Photobiol. B Biol. 56:1-11.  https://doi.org/10.1016/S1011-1344(00)00046-4
  43. Townsend, A. J., Ware, M. A. & Ruban, A. V. 2018. Dynamic interplay between photodamage and photoprotection in photosystem II. Plant Cell Environ. 41:1098-1112.  https://doi.org/10.1111/pce.13107
  44. Van Kooten, O. & Snel, J. F. H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25:147-150.  https://doi.org/10.1007/BF00033156
  45. Wang, X., Zhang, P., Wu, Y. & Zhang, L. 2020. Effect of light quality on growth, ultrastructure, pigments, and membrane lipids of Pyropia haitanensis. J. Appl. Phycol. 32:4189-4197.  https://doi.org/10.1007/s10811-020-02264-4
  46. Watanabe, M. & Ikeuchi, M. 2013. Phycobilisome: architec-ture of a light-harvesting supercomplex. Photosynth. Res. 116:265-276.  https://doi.org/10.1007/s11120-013-9905-3
  47. White, A. J. & Critchley, C. 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth. Res. 59:63-72.  https://doi.org/10.1023/A:1006188004189
  48. Wu, H. 2016. Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). BioMed Res. Int. 2016:7383918. 
  49. Ye, Z. P., Yu, Q. & Kang, H. J. 2012. Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespiratory conditions. Photosynthetica 50:472-476.  https://doi.org/10.1007/s11099-012-0051-5
  50. Yong, Y. S., Yong, W. T. L. & Anton, A. 2013. Analysis of formulae for determination of seaweed growth rate. J. Appl. Phycol. 25:1831-1834.  https://doi.org/10.1007/s10811-013-0022-7