DOI QR코드

DOI QR Code

Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway

  • Bao Trong Nguyen (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Eun-Joo Shin (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Ji Hoon Jeong (Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University) ;
  • Naveen Sharma (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Ngoc Kim Cuong Tran (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Yen Nhi Doan Nguyen (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Dae-Joong Kim (Department of Anatomy and Cell Biology, Medical School, Kangwon National University) ;
  • Myung Bok Wie (Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Yi Lee (Department of Industrial Plant Science & Technology, Chungbuk National University) ;
  • Jae Kyung Byun (Korea Society of Forest Environmental Research) ;
  • Sung Kwon Ko (Department of Oriental Medical Food & Nutrition, Semyung University) ;
  • Seung-Yeol Nah (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Hyoung-Chun Kim (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University)
  • Received : 2022.06.13
  • Accepted : 2023.01.15
  • Published : 2023.07.01

Abstract

Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

Keywords

Acknowledgement

Naveen Sharma was supported by the BK21 program.

References

  1. Tran TV, Shin EJ, Dang DK, Ko SK, Jeong JH, Nah SY, Jang CG, Lee YJ, Toriumi K, Nabeshima T, et al. Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice. Food Chem Toxicol 2017;110:300-15. https://doi.org/10.1016/j.fct.2017.10.019
  2. Tu TT, Sharma N, Shin EJ, Tran HQ, Lee YJ, Nah SY, Tran HP, Jeong JH, Ko SK, Byun JK, et al. Treatment with mountain-cultivated ginseng alleviates trimethyltin-induced cognitive impairments in mice via IL-6-dependent JAK2/STAT3/ERK signaling. Planta Med 2017;83:1342-50. https://doi.org/10.1055/s-0043-111896
  3. Tran TV, Shin EJ, Ko SK, Nam Y, Chung YH, Jeong JH, Jang CG, Nah SY, Yamada K, Nabeshima T, et al. Mountain-cultivated ginseng attenuates phencyclidine-induced abnormal behaviors in mice by positive modulation of glutathione in the prefrontal cortex of mice. J Med Food 2016;19:961-9. https://doi.org/10.1089/jmf.2016.3751
  4. Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, Nah SY, Yang BW, Ko SK, Nabeshima T, et al. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cdelta gene. Mol Neurobiol 2014;49:1400-21.
  5. Paul S, Shin HS, Kang SC. Inhibition of inflammations and macrophage activation by ginsenoside-Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food Chem Toxicol 2012;50:1354-61. https://doi.org/10.1016/j.fct.2012.02.035
  6. Kim C, Choo GC, Cho HS, Lim JT. Soil properties of cultivation sites for mountain-cultivated ginseng at local level. J Ginseng Res 2015;39:76-80. https://doi.org/10.1016/j.jgr.2014.06.004
  7. Xu XF, Cheng XL, Lin QH, Li SS, Jia Z, Han T, Lin RC, Wang D, Wei F, Li XR. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. J Ginseng Res 2016;40:344-50. https://doi.org/10.1016/j.jgr.2015.11.001
  8. Zhong WT, Wu XZ, Yu ZJ, Jin JR. Definition and identification of wild ginseng, garden ginseng, ginseng under forest. J Ginseng Res 2006;2:14-5.
  9. Chu Y, Lan RS, Huang R, Feng H, Kumar R, Dayal S, Chan KS, Dai DF. Glutathione peroxidase-1 overexpression reduces oxidative stress, and improves pathology and proteome remodeling in the kidneys of old mice. Aging Cell 2020;19:e13154.
  10. He T, Joyner MJ, Katusic ZS. Aging decreases expression and activity of glutathione peroxidase-1 in human endothelial progenitor cells. Microvasc Res 2009;78:447-52. https://doi.org/10.1016/j.mvr.2009.08.009
  11. Oelze M, Kroller-Schon S, Steven S, Lubos E, Doppler C, Hausding M, Tobias S, Brochhausen C, Li H, Torzewski M, et al. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension 2014;63:390-6. https://doi.org/10.1161/HYPERTENSIONAHA.113.01602
  12. Lee Y, Oh S. Administration of red ginseng ameliorates memory decline in aged mice. J Ginseng Res 2015;39:250-6. https://doi.org/10.1016/j.jgr.2015.01.003
  13. Rapp PR, Gallagher M. Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 1996;93:9926-30. https://doi.org/10.1073/pnas.93.18.9926
  14. Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: novel potentials of an old enzyme. Food Chem Toxicol 2021;148:111945.
  15. Sharma N, Shin EJ, Kim NH, Cho EH, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, et al. Protective potentials of far-infrared ray against neuropsychotoxic conditions. Neurochem Int 2019;122:144-8. https://doi.org/10.1016/j.neuint.2018.11.019
  16. Sharma N, Shin EJ, Pham DT, Sharma G, Dang DK, Duong CX, Kang SW, Nah SY, Jang CG, Lei XG, et al. GPx-1-encoded adenoviral vector attenuates dopaminergic impairments induced by methamphetamine in GPx-1 knockout mice through modulation of NF-kappaB transcription factor. Food Chem Toxicol 2021;154:112313.
  17. Shin EJ, Chung YH, Sharma N, Nguyen BT, Lee SH, Kang SW, Nah SY, Wie MB, Nabeshima T, Jeong JH, et al. Glutathione peroxidase-1 knockout facilitates memory impairment induced by beta-Amyloid (1-42) in mice via inhibition of PKC betaII-mediated ERK signaling; Application with glutathione peroxidase-1 gene-encoded adenovirus vector. Neurochem Res 2020;45:2991-3002. https://doi.org/10.1007/s11064-020-03147-3
  18. Shin EJ, Hwang YG, Pham DT, Lee JW, Lee YJ, Pyo D, Lei XG, Jeong JH, Kim HC. Genetic overexpression of glutathione peroxidase-1 attenuates microcystinleucine-arginine-induced memory impairment in mice. Neurochem Int 2018;118:152-65. https://doi.org/10.1016/j.neuint.2018.06.006
  19. Shin EJ, Lee SH, Sharma N, Nguyen BT, Chung YH, Kang SW, Nah SY, Lee YJ, Nabeshima T, Jeong JH, et al. An adenoviral vector encoded with the GPx-1 gene attenuates memory impairments induced by beta-amyloid (1-42) in GPx-1 KO mice via activation of M1 mAChR-mediated signalling. Free Radic Res 2021;55:11-25. https://doi.org/10.1080/10715762.2020.1854455
  20. Tran TV, Shin EJ, Jeong JH, Lee JW, Lee Y, Jang CG, Nah SY, Lei XG, Toriumi K, Yamada K, et al. Protective potential of the glutathione peroxidase-1 gene in abnormal behaviors induced by phencyclidine in mice. Mol Neurobiol 2017;54:7042-62. https://doi.org/10.1007/s12035-016-0239-y
  21. Tran TV, Shin EJ, Nguyen LTT, Lee Y, Kim DJ, Jeong JH, Jang CG, Nah SY, Toriumi K, Nabeshima T, et al. Protein kinase Cdelta gene depletion protects against methamphetamine-induced impairments in recognition memory and ERK1/2 signaling via upregulation of glutathione peroxidase-1 gene. Mol Neurobiol 2018;55:4136-59.
  22. Tu TT, Sharma N, Shin EJ, Tran HQ, Lee YJ, Jeong JH, Nah SY, Tran HP, Byun JK, Ko SK, et al. Ginsenoside Re protects trimethyltin-induced neurotoxicity via activation of IL-6-mediated phosphoinositol 3-kinase/Akt signaling in mice. Neurochem Res 2017;42:3125-39. https://doi.org/10.1007/s11064-017-2349-y
  23. Boone DR, Leek JM, Falduto MT, Torres KEO, Sell SL, Parsley MA, Cowart JC, Uchida T, Micci MA, DeWitt DS, et al. Effects of AAV-mediated knockdown of nNOS and GPx-1 gene expression in rat hippocampus after traumatic brain injury. PLoS One 2017;12:e0185943.
  24. Furling D, Ghribi O, Lahsaini A, Mirault ME, Massicotte G. Impairment of synaptic transmission by transient hypoxia in hippocampal slices: improved recovery in glutathione peroxidase transgenic mice. Proc Natl Acad Sci U S A 2000;97:4351-6. https://doi.org/10.1073/pnas.060574597
  25. Nam Y, Wie MB, Shin EJ, Nguyen TT, Nah SY, Ko SK, Jeong JH, Jang CG, Kim HC. Ginsenoside Re protects methamphetamine-induced mitochondrial burdens and proapoptosis via genetic inhibition of protein kinase C delta in human neuroblastoma dopaminergic SH-SY5Y cell lines. J Appl Toxicol 2015;35: 927-44. https://doi.org/10.1002/jat.3093
  26. Ho YS, Magnenat JL, Bronson RT, Cao J, Gargano M, Sugawara M, Funk CD. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 1997;272:16644-51. https://doi.org/10.1074/jbc.272.26.16644
  27. Park SJ, Shin EJ, Min SS, An J, Li Z, Hee Chung Y, Hoon Jeong J, Bach JH, Nah SY, Kim WK, et al. Inactivation of JAK2/STAT3 signaling axis and downregulation of M1 mAChR cause cognitive impairment in klotho mutant mice, a genetic model of aging. Neuropsychopharmacology 2013;38:1426-37. https://doi.org/10.1038/npp.2013.39
  28. Lebel CP, Bondy SC. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem Int 1990;17:435-40. https://doi.org/10.1016/0197-0186(90)90025-O
  29. Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem 1987;262:5488-91. https://doi.org/10.1016/S0021-9258(18)45598-6
  30. Mai HN, Pham DT, Chung YH, Sharma N, Cheong JH, Yun J, Nah SY, Jeong JH, Gen Lei X, Shin EJ, et al. Glutathione peroxidase-1 knockout potentiates behavioral sensitization induced by cocaine in mice via sigma-1 receptormediated ERK signaling: a comparison with the case of glutathione peroxidase-1 overexpressing transgenic mice. Brain Res Bull 2020;164: 107-20. https://doi.org/10.1016/j.brainresbull.2020.08.011
  31. Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Ottersen OP, Nah SY, Hong JS, Nabeshima T, et al. PKCdelta-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic Biol Med 2018;115:318-37. https://doi.org/10.1016/j.freeradbiomed.2017.12.018
  32. Shin EJ, Nguyen BT, Jeong JH, Hoai Nguyen BC, Tran NKC, Sharma N, Kim DJ, Nah SY, Lichtstein D, Nabeshima T, et al. Ouabain inhibitor rostafuroxin attenuates dextromethorphan-induced manic potential. Food Chem Toxicol 2021;158:112657.
  33. Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Nah SY, Byun JK, Ko SK, Bing G, et al. Ginsenoside Re protects methamphetamine-induced dopaminergic neurotoxicity in mice via upregulation of dynorphin-mediated kappaopioid receptor and downregulation of substance P-mediated neurokinin 1 receptor. J Neuroinflammation 2018;15:52.
  34. Nguyen BT, Sharma N, Shin EJ, Jeong JH, Lee SH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Kim HC. Theanine attenuates memory impairments induced by klotho gene depletion in mice. Food Funct 2019;10:325-32. https://doi.org/10.1039/C8FO01577E
  35. Shin EJ, Hwang YG, Pham DT, Lee JW, Lee YJ, Pyo D, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 overexpressing transgenic mice are protected from neurotoxicity induced by microcystin-leucine-arginine. Environ Toxicol 2018;33:1019-28. https://doi.org/10.1002/tox.22580
  36. Li J, Ding X, Zhang R, Jiang W, Sun X, Xia Z, Wang X, Wu E, Zhang Y, Hu Y. Harpagoside ameliorates the amyloid-beta-induced cognitive impairment in rats via up-regulating BDNF expression and MAPK/PI3K pathways. Neuroscience 2015;303:103-14. https://doi.org/10.1016/j.neuroscience.2015.06.042
  37. Saporito MS, Brown ER, Carswell S, DiCamillo AM, Miller MS, Murakata C, Neff NT, Vaught JL, Haun FA. Preservation of cholinergic activity and prevention of neuron death by CEP-1347/KT-7515 following excitotoxic injury of the nucleus basalis magnocellularis. Neuroscience 1998;86:461-72. https://doi.org/10.1016/S0306-4522(98)00059-1
  38. Wang Z, Liu Q, Zhang R, Liu S, Xia Z, Hu Y. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors. Neuroscience 2009;163:1363-72. https://doi.org/10.1016/j.neuroscience.2009.07.041
  39. Sani M, Sebai H, Gadacha W, Boughattas NA, Reinberg A, Mossadok BA. Catalase activity and rhythmic patterns in mouse brain, kidney and liver. Comp Biochem Physiol B Biochem Mol Biol 2006;145:331-7. https://doi.org/10.1016/j.cbpb.2006.08.005
  40. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M. Glutathione peroxidase family - an evolutionary overview. FEBS J 2008;275:3959-70. https://doi.org/10.1111/j.1742-4658.2008.06542.x
  41. Power JH, Blumbergs PC. Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol 2009;117:63-73. https://doi.org/10.1007/s00401-008-0438-3
  42. de Haan JB, Bladier C, Lotfi-Miri M, Taylor J, Hutchinson P, Crack PJ, Hertzog P, Kola I. Fibroblasts derived from Gpx1 knockout mice display senescent-like features and are susceptible to H2O2-mediated cell death. Free Radic Biol Med 2004;36:53-64. https://doi.org/10.1016/j.freeradbiomed.2003.10.020
  43. Han Y, Son SJ, Akhalaia M, Platonov A, Son HJ, Lee KH, Yun YS, Song JY. Modulation of radiation-induced disturbances of antioxidant defense systems by ginsan. Evid Based Complement Alternat Med 2005;2:529-36. https://doi.org/10.1093/ecam/neh123
  44. Yokozawa T, Satoh A, Cho EJ. Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J Pharm Pharmacol 2004;56: 107-13. https://doi.org/10.1211/0022357022449
  45. Cho IH. Effects of panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. https://doi.org/10.5142/jgr.2012.36.4.342
  46. Durante W. Targeting heme oxygenase-1 in vascular disease. Curr Drug Targets 2010;11:1504-16. https://doi.org/10.2174/1389450111009011504
  47. Romero A, San Hipolito-Luengo A, Villalobos LA, Vallejo S, Valencia I, Michalska P, Pajuelo-Lozano N, Sanchez-Perez I, Leon R, Bartha JL, et al. The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell 2019;18:e12913.
  48. Maltese G, Psefteli PM, Rizzo B, Srivastava S, Gnudi L, Mann GE, Siow RC. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J Cell Mol Med 2017;21:621-7. https://doi.org/10.1111/jcmm.12996
  49. Perry EK, Perry RH, Gibson PH, Blessed G, Tomlinson BE. A cholinergic connection between normal aging and senile dementia in the human hippocampus. Neurosci Lett 1977;6:85-9. https://doi.org/10.1016/0304-3940(77)90070-2
  50. Perry EK, Perry RH, Tomlinson BE. Circadian variations in cholinergic enzymes and muscarinic receptor binding in human cerebral cortex. Neurosci Lett 1977;4:185-9. https://doi.org/10.1016/0304-3940(77)90136-7
  51. Perry EK. The cholinergic system in old age and Alzheimer's disease. Age Ageing 1980;9:1-8. https://doi.org/10.1093/ageing/9.1.1
  52. Zambrzycka A, Alberghina M, Strosznajder JB. Effects of aging and amyloidbeta peptides on choline acetyltransferase activity in rat brain. Neurochem Res 2002;27:277-81.
  53. Kim HJ, Shin EJ, Lee BH, Choi SH, Jung SW, Cho IH, Hwang SH, Kim JY, Han JS, Chung C, et al. Oral administration of gintonin attenuates cholinergic impairments by scopolamine, amyloid-beta protein, and mouse model of Alzheimer's disease. Mol Cells 2015;38:796-805. https://doi.org/10.14348/molcells.2015.0116
  54. Lee MR, Ma JY, Sung CK. Chronic dietary ginseng extract administration ameliorates antioxidant and cholinergic systems in the brains of aged mice. J Ginseng Res 2017;41:615-9. https://doi.org/10.1016/j.jgr.2017.06.002
  55. Bobinac M, Celic T, Vukelic I, Spanjol J, Rubinic N, Bobinac D. Nuclear factor erythroid 2-related factor 2 and choline acetyltransferase co-expression in rat spinal cord neurons after ischemia-reperfusion injury. J Biol Regul Homeost Agents 2018;32:803-13.
  56. Bae MY, Cho JH, Choi IS, Park HM, Lee MG, Kim DH, Jang IS. Compound K, a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons. J Neurochem 2010;114:1085-96. https://doi.org/10.1111/j.1471-4159.2010.06833.x
  57. Cai CY, Chen C, Zhou Y, Han Z, Qin C, Cao B, Tao Y, Bian XL, Lin YH, Chang L, et al. PSD-95-nNOS Coupling regulates contextual fear extinction in the dorsal CA3. Sci Rep 2018;8:12775.
  58. Kurimoto H, Nishijo H, Uwano T, Yamaguchi H, Zhong YM, Kawanishi K, Ono T. Effects of nonsaponin fraction of red ginseng on learning deficits in aged rats. Physiol Behav 2004;82:345-55.  https://doi.org/10.1016/j.physbeh.2004.04.001