DOI QR코드

DOI QR Code

Korean red ginseng water extract produces antidepressant-like effects through involving monoamines and brain-derived neurotrophic factor in rats

  • Tzu-wen Chou (Institute of Food Science and Technology, National Taiwan University) ;
  • Huai-Syuan Huang (Institute of Food Science and Technology, National Taiwan University) ;
  • Suraphan Panyod (Institute of Food Science and Technology, National Taiwan University) ;
  • Yun-Ju Huang (Institute of Food Science and Technology, National Taiwan University) ;
  • Lee-Yan Sheen (Institute of Food Science and Technology, National Taiwan University)
  • 투고 : 2022.03.04
  • 심사 : 2023.01.05
  • 발행 : 2023.07.01

초록

Background: Ginseng Radix (Panax ginseng Meyer, Araliaceae) has been used medicinally to treat the brain and nervous system problems worldwide. Recent studies have revealed physiological effects that could potentially benefit cognitive performance or mood. The present study aimed to investigate the antidepressant effects of Korean red ginseng water extract (KGE) and its active component in an unpredictable chronic mild stress (UCMS)-induced animal model and elucidate the underlying mechanisms. Methods: The antidepressant potential of the UCMS model was evaluated using the sucrose preference test and open field tests. The behavioral findings were further corroborated by the assessment of neurotransmitters and their metabolites from the prefrontal cortex and hippocampus of rats. Three doses of KGE (50, 100, and 200 mg/kg) were orally administered during the experiment. Furthermore, the mechanism underlying the antidepressant-like action of KGE was examined by measuring the levels of brain-derived neurotrophic factor (BDNF)/CREB, nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) proteins in the prefrontal cortex of UCMS-exposed rats. Results: KGE treatment normalized UCMS-induced depression-related behaviors. Neurotransmitter studies conducted after completing behavioral experiments demonstrated that KGE caused a reduction in the ratio of serotonin and dopamine, indicating a decrease in serotonin and dopamine turnover. Moreover, the expression of BDNF, Nrf2, Keap1 and AKT were markedly increased by KGE in the prefrontal cortex of depressed rats. Conclusion: Our results provide evidence that KGE and its constituents exert antidepressant effects that mediate the dopaminergic and serotonergic systems and expression of BDNF protein in an animal model.

키워드

과제정보

The authors thank the Korea Ginseng Cooperation (KGC) for providing the Korean red ginseng water extract (KGE) for the animal experiments.

참고문헌

  1. Kraus C, Castren E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity-links between molecular, functional and structural pathophysiology in depression. Neurosci. Biobehav. Rev. 2017;77:317-26.  https://doi.org/10.1016/j.neubiorev.2017.03.007
  2. Quesseveur G, David D, Gaillard M, Pla P, Wu M, Nguyen H, Nicolas V, Auregan G, David I, Dranovsky A. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities, Transl. Psychiatry 2013;3:-253. 
  3. Qi G, Mi Y, Wang Y, Li R, Huang S, Li X, Liu X. Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain. Food Funct 2017;8:4421-32.  https://doi.org/10.1039/C7FO00991G
  4. Kapczinski F, Frey BN, Andreazza AC, Kauer-Sant'Anna M, Cunha A, Post RM. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Braz J Psychiatry 2008;30:243-5.  https://doi.org/10.1590/S1516-44462008000300011
  5. Liu H. Behavioral, cognitive, and biochemical consequences of early Life stress in later Life: insights from an animal model. 2017. 
  6. Park TY, Hong M, Sung H, Kim S, Suk KT. Effect of Korean Red Ginseng in chronic liver disease. J. Ginseng Res 2017;41:450-5.  https://doi.org/10.1016/j.jgr.2016.11.004
  7. Heo JH, Lee ST, Chu K, Oh M, Park HJ, Shim JY, Kim M. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer's disease. Eur. J. Neurol. 2008;15:865-8.  https://doi.org/10.1111/j.1468-1331.2008.02157.x
  8. Helms S. Cancer prevention and therapeutics: panax ginseng. Altern Med Rev 2004;9. 
  9. Wong VKW, Cheung SSF, Li T, Jiang ZH, Wang JR, Dong H, Yi XQ, Zhou H, Liu L. Asian ginseng extract inhibits in vitro and in vivo growth of mouse lewis lung carcinoma via modulation of ERK-p53 and NF-κB signaling. J. Cell. Biochem. 2010;111:899-910.  https://doi.org/10.1002/jcb.22778
  10. Choi S-Y, Park J-S, Shon C-H, Lee C-Y, Ryu J-M, Son D-J, Hwang B-Y, Yoo H-S, Cho Y-C, Lee J. Fermented Korean red ginseng extract enriched in Rd and Rg3 protects against non-alcoholic fatty liver disease through regulation of mTORC1. Nutrients 2019;11:2963. 
  11. Radad K, Gille G, Liu L, Rausch W-D. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J. Pharmacol. Sci. 2006;100:175-86.  https://doi.org/10.1254/jphs.CRJ05010X
  12. Zhao Y, Wang Y, Zhang M, Gao Y, Yan Z. Protective effects of ginsenosides (20R)-Rg3 on H2O2-induced myocardial cell injury by activating keap-1/Nrf2/HO-1 signaling pathway. Chem. Biodivers. 2021;18:e2001007. 
  13. Zhang H, Zhou Z, Chen Z, Zhong Z, Li Z. Ginsenoside Rg3 exerts anti-depressive effect on an NMDA-treated cell model and a chronic mild stress animal model. J. Pharmacol. Sci. 2017;134:45-54.  https://doi.org/10.1016/j.jphs.2017.03.007
  14. Chen P-J, Hsieh C-L, Su K-P, Hou Y-C, Chiang H-M, Lin I-H, Sheen L-Y. The antidepressant effect of Gastrodia elata Bl. on the forced-swimming test in rats. Am. J. Chin. Med. 2008;36:95-106.  https://doi.org/10.1142/S0192415X08005618
  15. Lee B, Sur B, Lee H, Oh S. Korean Red Ginseng prevents posttraumatic stress disorder-triggered depression-like behaviors in rats via activation of the serotonergic system. J. Ginseng Res. 2020;44:644-54.  https://doi.org/10.1016/j.jgr.2019.09.005
  16. Katz RJ. Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol. Biochem. Behav. 1982;16:965-8.  https://doi.org/10.1016/0091-3057(82)90053-3
  17. Frisbee JC, Brooks SD, Stanley SC, d'Audiffret AC. An unpredictable chronic mild stress protocol for instigating depressive symptoms, behavioral changes and negative health outcomes in rodents. JoVE (Journal of Visualized Experiments) 2015:e53109. 
  18. Liu M-Y, Yin C-Y, Zhu L-J, Zhu X-H, Xu C, Luo C-X, Chen H, Zhu D-Y, Zhou Q-G. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat. Protoc. 2018;13:1686-98.  https://doi.org/10.1038/s41596-018-0011-z
  19. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 2006;29:565-98.  https://doi.org/10.1146/annurev.neuro.29.051605.113009
  20. Hall CS. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J. Comp. Psychol. 1934;18:385. 
  21. Sestakova N, Puzserova A, Kluknavsky M, Bernatova I. Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip. Toxicol. 2013;6:126. 
  22. Chen W-C, Lai Y-S, Lin S-H, Lu K-H, Lin Y-E, Panyod S, Ho C-T, Sheen L-Y. Antidepressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. J. Ethnopharmacol. 2016;182:190-9.  https://doi.org/10.1016/j.jep.2016.02.001
  23. Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: from pharmacology to toxicology. Food Chem. Toxicol. 2017;107:362-72.  https://doi.org/10.1016/j.fct.2017.07.019
  24. Wu W, Sun L, Zhang Z, Guo Y, Liu S. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J. Pharm. Biomed 2015;107:141-50.  https://doi.org/10.1016/j.jpba.2014.12.030
  25. Lee SM, Bae B-S, Park H-W, Ahn N-G, Cho B-G, Cho Y-L, Kwak Y-S. Characterization of Korean red ginseng (panax ginseng meyer): history, preparation method, and chemical composition. J. Ginseng Res 2015;39:384-91.  https://doi.org/10.1016/j.jgr.2015.04.009
  26. Jang A, Sueng Y-C, Ji J-g. The comparative study on physiological activity of White ginseng, Red ginseng and Black ginseng extract. J. Digit. Converg. 2016;14:459-71.  https://doi.org/10.14400/JDC.2016.14.5.459
  27. Sohn S-H, Kim S-K, Kim Y-O, Kim H-D, Shin Y-S, Yang S-O, Kim S-Y, Lee S-W. A comparison of antioxidant activity of Korean White and Red Ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells. J. Ginseng Res 2013;37:442. 
  28. Hyun M-S, Hur J-M, Shin Y-S, Song B-J, Mun Y-J, Woo W-H. Comparison study of white ginseng, red ginseng, and fermented red ginseng on the protective effect of LPS-induced inflammation in RAW 264.7 cells. J. Appl. Biol. Chem. 2009;52:21-7.  https://doi.org/10.3839/jabc.2009.004
  29. Wang G, Lei C, Tian Y, Wang Y, Zhang L, Zhang R. Rb1, the primary active ingredient in panax ginseng CA meyer, exerts antidepressant-like effects via the BDNF-Trkb-CREB pathway. Front. Pharmacol. 2019;10:1034. 
  30. Kang A, Xie T, Zhu D, Shan J, Di L, Zheng X. Suppressive effect of ginsenoside Rg3 against lipopolysaccharide-induced depression-like behavior and neuroinflammation in mice. J. Agric. Food Chem. 2017;65:6861-9.  https://doi.org/10.1021/acs.jafc.7b02386
  31. Xu J-n, Chen L-f, Su J, Liu Z-l, Chen J, Lin Q-f, Mao W-d, Shen D. The anxiolytic-like effects of ginsenoside Rg3 on chronic unpredictable stress in rats. Sci. Rep. 2018;8:1-9.  https://doi.org/10.1038/s41598-018-26146-5
  32. Wang G-L, He Z-M, Zhu H-Y, Gao Y-G, Zhao Y, Yang H, Zhang L-X. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng CA Meyer. J. Ethnopharmacol. 2017;204:118-24.  https://doi.org/10.1016/j.jep.2017.04.009
  33. Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 2013;38:124-37.  https://doi.org/10.1038/npp.2012.73
  34. Brundin L, Sellgren C, Lim C, Grit J, Palsson E, Landen M, Samuelsson M, Lundgren K, Brundin P, Fuchs D. An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation, Transl. Psychiatry 2016;6:e865. 
  35. Mendez-David I, Tritschler L, El Ali Z, Damiens M-H, Pallardy M, David DJ, Kerdine-Romer S, Gardier AM. Nrf2-signaling and BDNF: a new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci. Lett. 2015;597:121-6.  https://doi.org/10.1016/j.neulet.2015.04.036
  36. Yao W, Lin S, Su J, Cao Q, Chen Y, Chen J, Zhang Z, Hashimoto K, Qi Q, Zhang Jc. Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents, Transl. Psychiatry 2021;11:1-12.  https://doi.org/10.1038/s41398-020-01158-w
  37. Hannan MA, Dash R, Sohag AAM, Haque MN, Moon IS. Neuroprotection against oxidative stress: phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system. Front. Mol. Neurosci. 2020;13:116. 
  38. Willner P. The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol. Stress 2017;6:78-93.  https://doi.org/10.1016/j.ynstr.2016.08.002
  39. Mineur YS, Belzung C, Crusio WE. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav. Brain Res. 2006;175:43-50.  https://doi.org/10.1016/j.bbr.2006.07.029
  40. Phillips A, Barr AM. Effects of chronic mild stress on motivation for sucrose: mixed messages. Psychopharmacology 1997;134. 
  41. Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat. Protoc. 2012;7:1009-14.  https://doi.org/10.1038/nprot.2012.044
  42. Saenz JCB, Villagra OR, Trias JF. Factor analysis of forced swimming test, sucrose preference test and open field test on enriched, social and isolated reared rats. Behav. Brain Res. 2006;169:57-65.  https://doi.org/10.1016/j.bbr.2005.12.001
  43. Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W, et al. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast 2017:6871089. https://doi.org/10.1155/2017/6871089. 
  44. Dinan TG. Glucocorticoids and the genesis of depressive illness a psychobiological model. Br J Psychiatry 1994;164:365-71.  https://doi.org/10.1192/bjp.164.3.365
  45. Johnson SA, Fournier NM, Kalynchuk LE. Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav. Brain Res. 2006;168:280-8. https://doi.org/10.1016/j.bbr.2005.11.019