DOI QR코드

DOI QR Code

20(S)- Protopanaxadiol suppresses hepatic stellate cell activation via WIF1 demethylation-mediated inactivation of the Wnt/β-catenin pathway

  • Chunxue Li (Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Yating Zhan (Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Rongrong Zhang (Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Qiqi Tao (Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Zhichao Lang (Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University) ;
  • Jianjian Zheng (Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University)
  • 투고 : 2021.08.28
  • 심사 : 2022.05.12
  • 발행 : 2023.07.01

초록

Background: 20(S)-protopanaxadiol (PPD), one of the main components of ginseng, has anti-inflammatory, anti-estrogenic, and anti-tumor activities. It is known that activated hepatic stellate cells (HSCs) are the primary producers of extracellular matrix (ECM) in the liver, and the Wnt/β-catenin pathway participates in the activation of HSCs. We aimed to explore whether PPD inhibits liver fibrosis is associated with the Wnt/β-catenin pathway inactivation. Methods: The anti-fibrotic roles of PPD were examined both in vitro and in vivo. We also examined the levels of Wnt inhibitory factor 1 (WIF1), DNA methyltransferase 1 (DNMT1) and WIF1 methylation. Results: PPD obviously ameliorated liver fibrosis in carbon tetrachloride (CCl4)-treated mice and reduced collagen deposition. PPD also suppressed the activation and proliferation of primary HSCs. Notably, PPD inhibited the Wnt/β-catenin pathway, reduced TCF activity, and increased P-β-catenin and GSK-3β levels. Interestingly, WIF1 was found to mediate the inactivation of the Wnt/β-catenin pathway in PPD-treated HSCs. WIF1 silencing suppressed the inhibitory effects of PPD on HSC activation and also restored α-SMA and type I collagen levels. The downregulation of WIF1 expression was associated with the methylation of its promoter. PPD induced WIF1 demethylation and restored WIF1 expression. Further experiments confirmed that DNMT1 overexpression blocked the effects of PPD on WIF1 expression and demethylation and enhanced HSC activation. Conclusion: PPD up-regulates WIF1 levels and impairs Wnt/β-catenin pathway activation via the downregulation of DNMT1-mediated WIF1 methylation, leading to HSC inactivation. Therefore, PPD may be a promising therapeutic drug for patients with liver fibrosis.

키워드

과제정보

The project was supported by the National Natural Science Foundation of China (No. 81873576), the Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (No.2020RC081) and the project of Wenzhou Medical University Basic Scientific Research (No. KYYW201904).

참고문헌

  1. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134(6):1655-69.  https://doi.org/10.1053/j.gastro.2008.03.003
  2. Friedman SL. Liver fibrosis - from bench to bedside. J Hepatol 2003;38(Suppl 1):S38-53.  https://doi.org/10.1016/S0168-8278(02)00429-4
  3. Li ZQ, Wu WR, Zhao C, Zhao C, Zhang XL, Yang Z, Pan J, Si WK. CCN1/Cyr61 enhances the function of hepatic stellate cells in promoting the progression of hepatocellular carcinoma. Int J Mol Med 2018;41(3):1518-28.  https://doi.org/10.3892/ijmm.2017.3356
  4. Cheng K, Mahato RI. Gene modulation for treating liver fibrosis. Crit Rev Ther Drug Carrier Syst 2007;24(2):93-146.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v24.i2.10
  5. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013;13(1):11-26.  https://doi.org/10.1038/nrc3419
  6. Sun S, Xie F, Xu X, Cai Q, Zhang Q, Cui Z, Zheng Y, Zhou J. Advanced oxidation protein products induce S-phase arrest of hepatocytes via the ROS-dependent, beta-catenin-CDK2-mediated pathway. Redox Biol 2018;14:338-53.  https://doi.org/10.1016/j.redox.2017.09.011
  7. Russell JO, Monga SP. Wnt/beta-Catenin signaling in liver development, homeostasis, and pathobiology. Annu Rev Pathol 2018;13:351-78.  https://doi.org/10.1146/annurev-pathol-020117-044010
  8. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008;8(5):387-98.  https://doi.org/10.1038/nrc2389
  9. Wu Q, Xu C, Zeng X, Zhang Z, Yang B, Rao Z. Tumor suppressor role of sFRP4 in hepatocellular carcinoma via the Wnt/betacatenin signaling pathway. Mol Med Rep 2021;23(5). 
  10. Li W, Zhu C, Chen X, Li Y, Gao R, Wu Q. Pokeweed antiviral protein downregulates Wnt/beta-catenin signalling to attenuate liver fibrogenesis in vitro and in vivo. Dig Liver Dis 2011;43(7):559-66.  https://doi.org/10.1016/j.dld.2011.02.016
  11. Samaei NM, Yazdani Y, Alizadeh-Navaei R, Azadeh H, Farazmandfar T. Promoter methylation analysis of WNT/beta-catenin pathway regulators and its association with expression of DNMT1 enzyme in colorectal cancer. J Biomed Sci 2014;21:73. 
  12. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2017;356(6337). 
  13. Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet 2012;13(10):705-19.  https://doi.org/10.1038/nrg3273
  14. Pisetsky DS. Immune response to DNA in systemic lupus erythematosus. Isr Med Assoc J 2001;3(11):850-3.  https://doi.org/10.1191/0961203302lu306rr
  15. Zhang D, Dai J, Zhang M, Xie Y, Cao Y, He G, Xu W, Wang L, Qiao Z, Qiao Z. Paternal nicotine exposure promotes hepatic fibrosis in offspring. Toxicol Lett 2021;343:44-55.  https://doi.org/10.1016/j.toxlet.2021.02.015
  16. Teng B, Jiang J, Zhao L, Gao J, Chen J, Liu Z, Wang H, Lu B. Ginsenoside PPD's antitumor effect via down-regulation of mTOR revealed by super-resolution imaging. Molecules 2017;22(3). 
  17. Lu Z, Xu H, Yu X, Wang Y, Huang L, Jin X, Sui D. 20(S)-Protopanaxadiol induces apoptosis in human hepatoblastoma HepG2 cells by downregulating the protein kinase B signaling pathway. Exp Ther Med 2018;15(2):1277-84.  https://doi.org/10.3892/etm.2017.5594
  18. Zhang T, Liang Y, Zuo P, Jing S, Li T, Wang Y, Lv C, Li D, Zhang J, Wei Z. 20(S)-Protopanaxadiol blocks cell cycle progression by targeting epidermal growth factor receptor. Food Chem Toxicol 2020;135:111017. 
  19. Park SM, Jung EH, Kim JK, Jegal KH, Park CA, Cho IJ, Kim SC. 20S-Protopanaxadiol, an aglycosylated ginsenoside metabolite, induces hepatic stellate cell apoptosis through liver kinase B1-AMP-activated protein kinase activation. J Ginseng Res 2017;41(3):392-402.  https://doi.org/10.1016/j.jgr.2017.01.012
  20. Oh HA, Kim DE, Choi HJ, Kim NJ, Kim DH. Anti-stress effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in immobilized mice. Biol Pharm Bull 2015;38(2):331-5.  https://doi.org/10.1248/bpb.b14-00669
  21. Mederacke I, Dapito DH, Affo S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc 2015;10(2):305-15.  https://doi.org/10.1038/nprot.2015.017
  22. Segnani C, Ippolito C, Antonioli L, Pellegrini C, Blandizzi C, Dolfi A, Bernardini N. Histochemical detection of collagen fibers by Sirius red/fast green is more sensitive than van Gieson or Sirius red alone in normal and inflamed rat colon. PLoS One 2015;10(12):e0144630. 
  23. Zhou G, Li C, Zhan Y, Zhang R, Lv B, Geng W, Zheng J. Pinostilbene hydrate suppresses hepatic stellate cell activation via inhibition of miR-17-5p-mediated Wnt/beta-catenin pathway. Phytomedicine 2020;79:153321. 
  24. Yu F, Lu Z, Chen B, Wu X, Dong P, Zheng J. Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched 1 methylation. J Cell Mol Med 2015;19(11):2617-32.  https://doi.org/10.1111/jcmm.12655
  25. McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB. DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res 2007;67(11):5097-102.  https://doi.org/10.1158/0008-5472.CAN-06-2029
  26. Lin K, Liu B, Lim SL, Fu X, Sze SC, Yung KK, Zhang S. 20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3beta in the Wnt/GSK-3beta/beta-catenin pathway. J Ginseng Res 2020;44(3):475-82.  https://doi.org/10.1016/j.jgr.2019.03.001
  27. Jia WQ, Zhou TC, Dai JW, Liu ZN, Zhang YF, Zang DD, Lv XW. CD73 regulates hepatic stellate cells activation and proliferation through Wnt/beta-catenin signaling pathway. Eur J Pharmacol 2021;890:173667. 
  28. Shao B, Feng Y, Zhang H, Yu F, Li Q, Tan C, Xu H, Ying J, Li L, Yang D, et al. The 3p14.2 tumour suppressor ADAMTS9 is inactivated by promoter CpG methylation and inhibits tumour cell growth in breast cancer. J Cell Mol Med 2018;22(2):1257-71.  https://doi.org/10.1111/jcmm.13404
  29. Gabbianelli R, Bordoni L, Morano S, Calleja-Agius J, Lalor JG. Nutri-epigenetics and gut microbiota: how birth care, bonding and breastfeeding can influence and Be influenced? Int J Mol Sci 2020;21(14). 
  30. Zhang H, Xu HL, Wang YC, Lu ZY, Yu XF, Sui DY. 20(S)-Protopanaxadiol-Induced apoptosis in MCF-7 breast cancer cell line through the inhibition of PI3K/AKT/mTOR signaling pathway. Int J Mol Sci 2018;19(4). 
  31. Yang L, Zhang XY, Li K, Li AP, Yang WD, Yang R, Wang P, Zhao ZH, Cui F, Qin Y, et al. Protopanaxadiol inhibits epithelial-mesenchymal transition of hepatocellular carcinoma by targeting STAT3 pathway. Cell Death Dis 2019;10(9):630. 
  32. Park EJ, Zhao YZ, Kim J, Sohn DH. A ginsenoside metabolite, 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol, triggers apoptosis in activated rat hepatic stellate cells via caspase-3 activation. Planta Med 2006;72(13):1250-3.  https://doi.org/10.1055/s-2006-947223
  33. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013;38(1):23-38.  https://doi.org/10.1038/npp.2012.112
  34. Mordaunt CE, Shibata NM, Kieffer DA, Czlonkowska A, Litwin T, Weiss KH, Gotthardt DN, Olson K, Wei D, Cooper S, et al. Epigenetic changes of the thioredoxin system in the tx-j mouse model and in patients with Wilson disease. Hum Mol Genet 2018;27(22):3854-69.  https://doi.org/10.1093/hmg/ddy262
  35. Zhuang Z, Yu D, Chen Z, Liu D, Yuan G, Yirong N, Sun L, Liu Y, He R, Wang K. Curcumin inhibits joint contracture through PTEN demethylation and targeting PI3K/Akt/mTOR pathway in myofibroblasts from human joint capsule. Evid Based Complement Alternat Med 2019;2019:4301238. 
  36. Mashhadikhan M, Kheiri H, Dehghanifard A. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J Oral Biosci 2020;62(4):349-56. https://doi.org/10.1016/j.job.2020.08.001