DOI QR코드

DOI QR Code

Mechanical behavior of RC beams bonded with thin porous FGM plates: Case of fiber concretes based on local materials from the mountains of the Tiaret highlands

  • Received : 2022.04.18
  • Accepted : 2023.05.10
  • Published : 2023.06.25

Abstract

The objective of this study is to evaluate the effects of adding fibers to concrete and the distribution rate of the porosity on the interfacial stresses of the beams strengthened with various types of functionally graded porous (FGP) plate. Toward this goal, the beams strengthened with FGP plate were considered and subjected to uniform loading. Three types of beams are considered namely RC beam, RC beam reinforced with metal fibers (RCFM) and RC beam reinforced with Alfa fibers (RCFA). From an analytical development, shear and normal interfacial stresses along the length of the FGP plates were obtained. The accuracy and validity of the proposed theoretical formula are confirmed by the others theoretical results. The results showed clearly that adding fibers to concrete and the distribution rate of the porosity have significant influence on the interfacial stresses of the beams strengthened with FGP plates. Finally, parametric studies are carried out to demonstrate the effect of the mechanical properties and thickness variations of FGP plate, concrete and adhesive on interface debonding, we can conclude that, This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP-RC hybrid structures.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References

  1. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021a), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117.
  2. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023.
  3. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021d), "New solution for damaged porous RC cantilever beamsstrengthening by composite plate", Adv. Mater. Res., 10(3), 169-194. http://doi.org/10.12989/amr.2021.10.3.169.
  4. Abderezak, R., Daouadji, T.H. and Rabia, B. (2022b), "Analysis and modeling of hyperstatic RC beam bonded by composite plate symmetrically loaded and supported", Steel Compos. Struct., 45(4), 591-603. https://doi.org/10.12989/scs.2022.45.4.591.
  5. Abderezak, R., Daouadji, T.H. and Tayeb, B. (2023), "Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material", Struct. Eng. Mech., 85(5), 573-592. https://doi.org/10.12989/sem.2023.85.5.573.
  6. Abderezak, R., Rabia, B. and Daouadji, T.H. (2022a), "Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force", Adv. Mater. Res., 11(2), 91-109. https://doi.org/10.12989/amr.2022.11.2.091.
  7. Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
  8. Akbas, S.D. (2021), "Forced vibration analysis of a fiber reinforced composite beam", Adv. Mater. Res., 10(1), 57-66. https://doi.org/10.12989/amr.2021.10.1.057.
  9. Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  10. Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  11. Ashour, A.F. (2006), "Flexural and shear capacities of concrete beams reinforced with GFRP bars", Constr. Build. Mater., 20, 1005-1015. https://doi.org/10.1016/j.conbuildmat.2005.06.023.
  12. Benachour, A., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30(11), 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.
  13. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://doi.org/10.12989/sem.2021.77.6.797.
  14. Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021b), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
  15. Chen, S., Zhang, Q. and Liu, H. (2022), "Dynamic response of double-FG porous beam system subjected to moving load", Eng. Comput., 38(Suppl 3), 2309-2328. https://doi.org/10.1007/s00366-021-01376-w.
  16. Chergui, S., Daouadji, T.H., Hamrat, M., Boulekbache, B., Bougara, A., Abbes, B. and Amziane, S. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Adv. Mater. Res., 8(3), 197-217. https://doi.org/10.12989/amr.2019.8.3.197.
  17. Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 38(Suppl 1), 489-521. https://doi.org/10.1007/s00366-020-01168-8.
  18. Daouadji, T.H., Abderezak, R. and Rabia, B. (2022), "New technique for repairing circular steel beams by FRP plate", Adv. Mater. Res., 11(3), 171-190. https://doi.org/10.12989/amr.2022.11.3.171.
  19. Fareed, S. (2014), "Behaviour of reinforced concrete beams strengthened by CFRP wraps with and without end anchorages", Procedia Eng., 77, 123-130. https://doi.org/10.1016/j.proeng.2014.07.011.
  20. Farrokh, M. and Taheripur, M. (2021), "Optimization of porosity distribution of FGP beams considering buckling strength", Struct. Eng. Mech., 79(6), 711-722. https://doi.org/10.12989/sem.2021.79.6.711.
  21. Gao, P., Xianglin, G. and Ayman, S.M. (2016), "Flexural behavior of preloaded reinforced concrete beams strengthened by prestressed CFRP laminates", Compos. Struct., 157(1), 33-50. https://doi.org/10.1016/j.compstruct.2016.08.013.
  22. Ghobadi, A., Beni, Y.T. and Zur, K.K. (2021), "Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon", Compos. Struct., 259(1) 113220. https://doi.org/10.1016/j.compstruct.2020.113220.
  23. Guo, R., Hu, W., Li, M. and Wang, B. (2020), "Study on the flexural strengthening effect of RC beams reinforced by FRP grid with PCM shotcrete", Compos. Struct., 239(1), 112000. https://doi.org/10.1016/j.compstruct.2020.112000.
  24. Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Couple. Syst. Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.
  25. Hamrat, M., Bouziadi, F., Boulekbache, B., Daouadji, T.H., Chergui, S., Labed, A. and Amziane, S. (2020), "Experimental and numerical investigation on the deflection behavior of pre-cracked and repaired reinforced concrete beams with fiber-reinforced polymer", Constr. Build. Mater., 249(20), 118745. http://doi.org/10.1016/j.conbuildmat.2020.118745.
  26. Hassaine Daouadji, T. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  27. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2021a), "Hyperstatic steel structure strengthened with prestressed carbon/glass hybrid laminated plate", Couple. Syst. Mech., 10(5), 393-414. https://doi.org/10.12989/csm.2021.10.5.393.
  28. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2021d), "A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage", Struct. Eng. Mech., 79(5), 531-540. http://doi.org/10.12989/sem.2021.79.5.531.
  29. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Tounsi, A. (2021c), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573.
  30. Henni, M.A.B., Abbes, B., Daouadji, T.H., Abbes, F. and Adim, B. (2021), "Numerical modeling of hygrothermal effect on the dynamic behavior of hybrid composite plates", Steel Compos. Struct., 39(6), 751-763. http://doi.org/10.12989/scs.2021.39.6.751.
  31. Huang, W. and Tahouneh, V. (2021), "Frequency study of porous FGPM beam on two-parameter elastic foundations via Timoshenko theory", Steel Compos. Struct., 40(1), 139-156. https://doi.org/10.12989/scs.2021.40.1.139.
  32. Kablia, A., Benferhat, R. and Hassaine Daouadji, T. (20022), "Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modeling", Couple. Syst. Mech., 11(5), 389-409. https://doi.org/10.12989/csm.2022.11.5.389.
  33. Kablia, A., Benferhat, R., Hassaine Daouadji, T. and Abderezak, R. (2023), "Free vibration of various types of FGP sandwich plates with variation in porosity distribution", Struct. Eng. Mech., 85(1), 1-14. https://doi.org/10.12989/sem.2023.85.1.001.
  34. Kablia, A., Benferhat, R., Hassaine Daouadji, T. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Couple. Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.
  35. Keleshteri, M.M. and Jelovica, J. (2022), "Nonlinear vibration analysis of bidirectional porous beams", Eng. Comput., 38, 5033-5049. https://doi.org/10.1007/s00366-021-01553-x.
  36. Khaniki, H.B., Ghayesh, M.H., Hussain, S. and Amabili, M. (2022), "Effects of geometric nonlinearities on the coupled dynamics of CNT strengthened composite beams with porosity, mass and geometric imperfections", Eng. Comput., 38(Suppl 4), 3463-3488. https://doi.org/10.1007/s00366-021-01474-9.
  37. Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.
  38. Kim, M., Ashesh, P., Jung, D., Kim, S. and Park, C. (2017), "The strengthening effect of CFRP for reinforced concrete beam", Procedia Eng., 210, 141-147. https://doi.org/10.1016/j.proeng.2017.11.059.
  39. Li, X., Wang, T., Liu, F. and Zhu, Z. (2021), "Computer simulation of the nonlinear static behavior of axially functionally graded microtube with porosity", Adv. Nano Res., 11(4), 437-451. https://doi.org/10.12989/anr.2021.11.4.437.
  40. Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: Analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  41. Priyanka, R., Twinkle, C.M. and Pitchaimani, J. (2022), "Stability and dynamic behavior of porous FGM beam: Influence of graded porosity, graphene platelets, and axially varying loads", Eng. Comput., 38(Suppl 5), 4347-4366. https://doi.org/10.1007/s00366-021-01478-5.
  42. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021c), "Fiber reinforced polymer in civil engineering: Shear lag effect on damaged RC cantilever beams bonded by prestressed plate", Couple. Syst. Mech., 10(4), 299-316. http://doi.org/10.12989/csm.2021.10.4.299.
  43. Rabia, B., Daouadji, T.H. and Abderezak, R. (2021a), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. http://doi.org/10.12989/cme.2021.3.1.041.
  44. Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Couple. Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
  45. Rahmani, M. and Mohammadi, Y. (2021), "Vibration of two types of porous FG sandwich conical shell with different boundary conditions", Struct. Eng. Mech., 79(4), 401-413. https://doi.org/10.12989/sem.2021.79.4.401.
  46. Ramachandra, M.A., Aravindan, M. and Ganesh, P. (2018), "Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete", Struct. Eng. Mech., 65(3), 315. https://doi.org/10.12989/sem.2018.65.3.315.
  47. Rao, G.A. and Injaganeri, S.S. (2011), "Evaluation of size dependent design shear strength of reinforced concrete beams without web reinforcement", Ind. Acad. Sci., 36(3), 393-410. https://doi.org/10.1007/s12046-011-0029-1.
  48. Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Couple. Syst. Mech., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161.
  49. Tayeb, B., Daouadji, T.H., Abderezak, R. and Tounsi, A. (2021), "Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate", Steel Compos. Struct., 41(3), 417-435. https://doi.org/10.12989/scs.2021.41.3.417.
  50. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021a), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.
  51. Tlidji, Y., Benferhat, R., Daouadji, T.H., Tounsi, A. and Trinh, L.C. (2022), "Free vibration analysis of FGP nanobeams with classical and non-classical boundary conditions using State-space approach", Adv. Nano Res., 13(5), 453-463. https://doi.org/10.12989/anr.2022.13.5.453.
  52. Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021b), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditions", Adv. Nano Res., 11(4), 347-359. https://doi.org/10.12989/.2021.11.4.347.
  53. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solid. Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  54. Tounsi, A., Hassaine Daouadji, T., Benyoucef, S. and Addabedia, E.A. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes Adhesiv., 29, 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  55. Wang, Y.H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Constr. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.
  56. Zeverdejani, M., Karimi, B. and Yaghoub, T. (2020), "Effect of laminate configuration on the free vibration/buckling of FG Graphene composites", Adv. Nano Res., 8(2), 103-114. http://doi.org/10.12989/anr.2020.8.2.103.