DOI QR코드

DOI QR Code

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Qingsong Zhang (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Hongbo Wang (College of Civil Engineering and Architecture, Shandong University of Science and Technology) ;
  • Rentai Liu (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Xin Chen (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Wenxin Li (Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology ) ;
  • Lihai Zhang (Department of Infrastructure Engineering, The University of Melbourne)
  • 투고 : 2021.07.25
  • 심사 : 2023.04.18
  • 발행 : 2023.06.25

초록

As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

키워드

과제정보

The research described in this paper was financially supported by the Joint Funds of National Natural Science Foundation of China [grant number U1706223], the China Scholarship Council [file number 201906220133], the National Natural Science Foundation of China [grant number 52109131], and the Natural Science Foundation of Shandong Province [grant number ZR2020QE290].

참고문헌

  1. Afifipour, M. and Moarefvand, P. (2014), "Mechanical behavior of bimrocks having high rock block proportion", Int. J. Rock Mech. Min. Sci., 65, 40-48. https://doi.org/10.1016/j.ijrmms.2013.11.008.
  2. Agustawijaya, D.S. (2007), "The uniaxial compressive strength of soft rock", Civil Engineering Dimension, 9(1), 9-14. https://doi.org/10.9744/ced.9.1.pp.%209-14.
  3. Alber, M. and Kahraman, S. (2009), "Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient", Rock Mech. Rock Eng., 42(1), 117-127. https://doi.org/10.1007/s00603-008-0167-x.
  4. Asadizadeh, M., Hossaini, M.F., Moosavi, M., Masoumi, H. and Ranjith, P.G. (2019), "Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression", Eng.Geol., 260, 105224. https://doi.org/10.1016/j.enggeo.2019.105224.
  5. Avsar, E. (2020), "Contribution of fractal dimension theory into the uniaxial compressive strength prediction of a volcanic welded bimrock", Bull. Eng. Geol. Environ., 79(7), 3605-3619. https://doi.org/10.1007/s10064-020-01778-y.
  6. Binaree, T., Azema, E., Estrada, N., Renouf, M. and Preechawuttipong, I. (2020), "Combined effects of contact friction and particle shape on strength properties and microstructure of sheared granular media", Phys. Rev. E, 102(2), 022901. https://doi.org/10.1103/PhysRevE.102.022901.
  7. Brown, E.T. (1981), Rock Characterization Testing and Monitoring, Oxford: Pergamon Press. https://doi.org/10.1016/0148-9062(81)90524-6.
  8. Burgi, C., Parriaux, A. and Franciosi, G. (2001), "Geological characterization of weak cataclastic fault rocks with regards to the assessment of their geomechanical properties", Q. J. Eng. Geol. Hydroge., 34(2), 225-232. https://doi.org/10.1144/qjegh.34.2.225.
  9. Coli, N., Berry, P. and Boldini, D. (2011), "In situ non-conventional shear tests for the mechanical characterisation of a bimrock", Int. J. Rock Mech. Min. Sci., 48(1), 95-102. https://doi.org/10.1016/j.ijrmms.2010.09.012.
  10. Fereshtenejad, S., Kim, J. and Song, J. J. (2021), "Empirical Model for Shear Strength of Artificial Rock Containing a Single Nonpersistent Joint", Int. J. Geomech., 21(8), 04021123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002099.
  11. Gerolymatou, E. and Triantafyllidis, T. (2016), "Shearing of materials with intermittent joints", Rock Mech. Rock Engi., 49(7), 2689-2700. https://doi.org/10.1007/s00603-016-0956-6.
  12. Ghareh, S., Kazemian, S. and Shahin, M. (2020), "Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study", Geomech. Eng., 21(4), 337-348. https://doi.org/10.12989/gae.2020.21.4.337.
  13. Goodman, R.E. and Ahlgren, C.S. (2000), "Evaluating safety of concrete gravity dam on weak rock: Scott Dam", J. Geotech. Geoenviron. Eng., 126(5), 429-442. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(429).
  14. Guo, Y.X., Zhang, Q.S., Xiao, F., Liu, R.T., Wang, Z.J. and Liu, Y.K. (2020), "Grouting rock fractures under condition of flowing water", Carbonates and Evaporites, 35(3), 1-15. https://doi.org/10.1007/s13146-020-00619-z.
  15. Guo, Y.X., Zhang, Q.S., Zhang, L.Z., Liu, R.T., Chen, X. and Liu, Y.K. (2021), "Experimental study on groutability of sand layer concerning permeation grouting", Adv. Mater. Sci. Eng., 2021, 1-10. https://doi.org/10.1155/2021/6698263.
  16. Howarth, D.F. and Rowlands, J.C. (1987), "Quantitative assessment of rock texture and correlation with drillability and strength properties", Rock Mech. Rock Eng., 20(1), 57-85. https://doi.org/10.1007/BF01019511.
  17. Huang, M., Xu, C.S., Zhan, J.W. and Wang, J.B. (2017), "Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body", Geomech. Eng., 13(2), 333-352. https://doi.org/10.12989/gae.2017.13.2.333.
  18. Jin, Y.H., Han, L.J., Meng, Q.B., Ma, D., Wen, S.Y. and Wang, S. (2018), "Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression", Geomech. Eng., 16(3), 273-284. https://doi.org/10.12989/gae.2018.16.3.273.
  19. Johnston, I.W. and Choi, S.K. (1986), "A synthetic soft rock for laboratory model studies", Geotechnique, 36(2), 251-263. https://doi.org/10.1680/geot.1986.36.2.251.
  20. Kahraman, S. and Alber, M. (2006), "Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix", Int. J. Rock Mech. Min. Sci., 43(8), 1277-1287. https://doi.org/10.1016/j.ijrmms.2006.03.017.
  21. Kalender, A.Y.C.A.N., Sonmez, H., Medley, E., Tunusluoglu, C. and Kasapoglu, K.E. (2014), "An approach to predicting the overall strengths of unwelded bimrocks and bimsoils", Eng. Geol., 183, 65-79. https://doi.org/10.1016/j.enggeo.2014.10.007.
  22. Kim, K.Y., Suh, H.S., Yun, T.S., Moon, S.W. and Seo, Y.S. (2016), "Effect of particle shape on the shear strength of fault gouge", Geosci. J., 20(3), 351-359. https://doi.org/10.1007/s12303-015-0051-0.
  23. Li, Y., Huang, R., Chan, L.S. and Chen, J. (2013), "Effects of particle shape on shear strength of clay-gravel mixture", KSCE J. Civil Eng., 17(4), 712-717. https://doi.org/10.1007/s12205-013-0003-z.
  24. Li, Z., Wang, Y.H., Ma, C.H. and Mok, C.M.B. (2017), "Experimental characterization and 3D DEM simulation of bond breakages in artificially cemented sands with different bond strengths when subjected to triaxial shearing", Acta Geotechnica, 12(5), 987-1002. https://doi.org/10.1007/s11440-017-0593-6.
  25. Liu, G., Feng, X.T., Jiang, Q., Yao, Z. and Li, S. (2017), "In situ observation of spalling process of intact rock mass at large cavern excavation", Eng. Geol., 226, 52-69. https://doi.org/10.1016/j.enggeo.2017.05.012.
  26. Liu, Z., Zhou, C., Lu, Y., Yang, X., Liang, Y. and Zhang, L. (2018), "Application of FRP bolts in monitoring the internal force of the rocks surrounding a mine-shield tunnel", Sensors, 18(9), 2763.https://doi.org/10.3390/s18092763.
  27. Liu, Z., Zhou, C., Su, D., Du, Z., Zhu, F. and Zhang, L. (2019), "Rheological deformation behavior of soft rocks under combination of compressive pressure and water-softening effects", Geotech. Test. J., 43(3), 737-757. https://doi.org/10.1520/GTJ20180342.
  28. Mahdevari, S. and Moarefvand, P. (2018), "Experimental investigation of fractal dimension effect on deformation modulus of an artificial bimrock", Bull. Eng. Geol. Environ., 77(4), 1729-1737. https://doi.org/10.1007/s10064-017-1074-8.
  29. Mahdevari, S., Moarefvand, P. and Mohammadzamani, D. (2020), "Considering the effect of block-to-matrix strength ratio on geomechanical parameters of bimrocks", Geotech. Geol. Eng., 38(5), 4501-4520. https://doi.org/10.1007/s10706-020-01304-7.
  30. Ozturk, C.A. and Nasuf, E. (2013), "Strength classification of rock material based on textural properties", Tunn. Undergr. Sp. Tech., 37, 45-54. https://doi.org/10.1016/j.tust.2013.03.005.
  31. Romanova, V.A., Balokhonov, R.R. and Schmauder, S. (2009), "The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite", Acta Materialia, 57(1), 97-107. https://doi.org/10.1016/j.actamat.2008.08.046.
  32. Sagong, M., Choi, I.Y., Lee, J.S. and Cho, C.S. (2020), "Shear strength behaviors of grouts under the blasting induced vibrations", Geomech. Eng., 21(2), 207-213. https://doi.org/10.12989/gae.2020.21.2.207.
  33. Savely, J.P. (1990), "Determination of shear strength of conglomerates using a caterpillar D9 ripper and comparison with alternative methods", Int. J. Min. Geol. Eng., 8(3), 203-225. https://doi.org/10.1007 / BF01554042. https://doi.org/10.1007/BF01554042
  34. Shakeri, M.R., Haeri, S.M., Shahrabi, M.M., Khosravi, A. and Sajadi, A.A. (2018), "An experimental study on mechanical behavior of a calcite cemented gravelly sand", Geotech. Test. J., 41(3), 494-507. https://doi.org/10.1520/GTJ20170095.
  35. Shaunik, D. and Singh, M. (2019), "Strength behaviour of a model rock intersected by non-persistent joint", J. Rock Mech. Geotech. Eng., 11(6), 1243-1255. https://doi.org/10.1016/j.jrmge.2019.01.004.
  36. Shen, B. (2014), "Coal mine roadway stability in soft rock: a case study", Rock Mech. Rock Eng., 47(6), 2225-2238. https://doi.org/10.1007/s00603-013-0528-y.
  37. Sonmez, H., Ercanoglu, M., Kalender, A.Y.C.A.N., Dagdelenler, G. and Tunusluoglu, C. (2016), "Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension", Int. J. Rock Mech. Min. Sci., 100(86), 91-103. https://doi.org/10.1016/j.ijmms.2016.03.022.
  38. Ulusay, R. and Erguler, Z.A. (2012), "Needle penetration test: evaluation of its performance and possible uses in predicting strength of weak and soft rocks", Eng. Geol., 149-150, 47-56. https://doi.org/10.1016/j.enggeo.2012.08.007.
  39. Xiao, Y., Yuan, Z., Lin, J., Ran, J., Dai, B., Chu, J. and Liu, H. (2019), "Effect of particle shape of glass beads on the strength and deformation of cemented sands", Acta Geotechnica, 14(6), 2123-2131. https://doi.org/10.1007/s11440-019-00830-w.
  40. Zhang, B., Li, S.C., Yang, X.Y., Xia, K.W., Liu, J.Y., Guo, S. and Wang, S.G. (2019), "The coalescence and strength of rock-like materials containing two aligned X-type flaws under uniaxial compression", Geomech. Eng., 17(1), 47-56. https://doi.org/10.12989/gae.2019.17.1.047.
  41. Zhang, Y., Jiang, Y., Asahina, D. and Wang, C. (2020), "Experimental and numerical investigation on shear failure behavior of rock-like samples containing multiple non-persistent joints", Rock Mech. Rock Eng., 53(10), 4717-4744. https://doi.org/10.1007/s00603-020-02186-0.
  42. Zhou, C.Y., Lu, Y.Q., Liu, Z. and Zhang. L.H. (2019), "An innovative acousto-optic-sensing-based triaxial testing system for rocks", Rock Mech. Rock Eng., 52(9), 3305-3321. https://doi.org/10.1007/s00603-019-01764-1.
  43. Zhou, C.Y., Yu, L.F., You, F., Liu, Z., Liang, Y.H. and Zhang. L.H. (2020a), "Coupled seepage and stress model and experiment verification for creep behavior of soft rock", Int. J. Geomech., 20(9), 04020146. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001774.
  44. Zhou, X.P., Bi, J., Deng, R.S. and Li, B. (2020b), "Effects of brittleness on crack behaviors in rock-like materials", J. Test. Eval., 48(4), 2829-2851. https://doi.org/10.1520/JTE20170595.