과제정보
The research described in this paper was financially supported by the Joint Funds of National Natural Science Foundation of China [grant number U1706223], the China Scholarship Council [file number 201906220133], the National Natural Science Foundation of China [grant number 52109131], and the Natural Science Foundation of Shandong Province [grant number ZR2020QE290].
참고문헌
- Afifipour, M. and Moarefvand, P. (2014), "Mechanical behavior of bimrocks having high rock block proportion", Int. J. Rock Mech. Min. Sci., 65, 40-48. https://doi.org/10.1016/j.ijrmms.2013.11.008.
- Agustawijaya, D.S. (2007), "The uniaxial compressive strength of soft rock", Civil Engineering Dimension, 9(1), 9-14. https://doi.org/10.9744/ced.9.1.pp.%209-14.
- Alber, M. and Kahraman, S. (2009), "Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient", Rock Mech. Rock Eng., 42(1), 117-127. https://doi.org/10.1007/s00603-008-0167-x.
- Asadizadeh, M., Hossaini, M.F., Moosavi, M., Masoumi, H. and Ranjith, P.G. (2019), "Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression", Eng.Geol., 260, 105224. https://doi.org/10.1016/j.enggeo.2019.105224.
- Avsar, E. (2020), "Contribution of fractal dimension theory into the uniaxial compressive strength prediction of a volcanic welded bimrock", Bull. Eng. Geol. Environ., 79(7), 3605-3619. https://doi.org/10.1007/s10064-020-01778-y.
- Binaree, T., Azema, E., Estrada, N., Renouf, M. and Preechawuttipong, I. (2020), "Combined effects of contact friction and particle shape on strength properties and microstructure of sheared granular media", Phys. Rev. E, 102(2), 022901. https://doi.org/10.1103/PhysRevE.102.022901.
- Brown, E.T. (1981), Rock Characterization Testing and Monitoring, Oxford: Pergamon Press. https://doi.org/10.1016/0148-9062(81)90524-6.
- Burgi, C., Parriaux, A. and Franciosi, G. (2001), "Geological characterization of weak cataclastic fault rocks with regards to the assessment of their geomechanical properties", Q. J. Eng. Geol. Hydroge., 34(2), 225-232. https://doi.org/10.1144/qjegh.34.2.225.
- Coli, N., Berry, P. and Boldini, D. (2011), "In situ non-conventional shear tests for the mechanical characterisation of a bimrock", Int. J. Rock Mech. Min. Sci., 48(1), 95-102. https://doi.org/10.1016/j.ijrmms.2010.09.012.
- Fereshtenejad, S., Kim, J. and Song, J. J. (2021), "Empirical Model for Shear Strength of Artificial Rock Containing a Single Nonpersistent Joint", Int. J. Geomech., 21(8), 04021123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002099.
- Gerolymatou, E. and Triantafyllidis, T. (2016), "Shearing of materials with intermittent joints", Rock Mech. Rock Engi., 49(7), 2689-2700. https://doi.org/10.1007/s00603-016-0956-6.
- Ghareh, S., Kazemian, S. and Shahin, M. (2020), "Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study", Geomech. Eng., 21(4), 337-348. https://doi.org/10.12989/gae.2020.21.4.337.
- Goodman, R.E. and Ahlgren, C.S. (2000), "Evaluating safety of concrete gravity dam on weak rock: Scott Dam", J. Geotech. Geoenviron. Eng., 126(5), 429-442. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(429).
- Guo, Y.X., Zhang, Q.S., Xiao, F., Liu, R.T., Wang, Z.J. and Liu, Y.K. (2020), "Grouting rock fractures under condition of flowing water", Carbonates and Evaporites, 35(3), 1-15. https://doi.org/10.1007/s13146-020-00619-z.
- Guo, Y.X., Zhang, Q.S., Zhang, L.Z., Liu, R.T., Chen, X. and Liu, Y.K. (2021), "Experimental study on groutability of sand layer concerning permeation grouting", Adv. Mater. Sci. Eng., 2021, 1-10. https://doi.org/10.1155/2021/6698263.
- Howarth, D.F. and Rowlands, J.C. (1987), "Quantitative assessment of rock texture and correlation with drillability and strength properties", Rock Mech. Rock Eng., 20(1), 57-85. https://doi.org/10.1007/BF01019511.
- Huang, M., Xu, C.S., Zhan, J.W. and Wang, J.B. (2017), "Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body", Geomech. Eng., 13(2), 333-352. https://doi.org/10.12989/gae.2017.13.2.333.
- Jin, Y.H., Han, L.J., Meng, Q.B., Ma, D., Wen, S.Y. and Wang, S. (2018), "Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression", Geomech. Eng., 16(3), 273-284. https://doi.org/10.12989/gae.2018.16.3.273.
- Johnston, I.W. and Choi, S.K. (1986), "A synthetic soft rock for laboratory model studies", Geotechnique, 36(2), 251-263. https://doi.org/10.1680/geot.1986.36.2.251.
- Kahraman, S. and Alber, M. (2006), "Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix", Int. J. Rock Mech. Min. Sci., 43(8), 1277-1287. https://doi.org/10.1016/j.ijrmms.2006.03.017.
- Kalender, A.Y.C.A.N., Sonmez, H., Medley, E., Tunusluoglu, C. and Kasapoglu, K.E. (2014), "An approach to predicting the overall strengths of unwelded bimrocks and bimsoils", Eng. Geol., 183, 65-79. https://doi.org/10.1016/j.enggeo.2014.10.007.
- Kim, K.Y., Suh, H.S., Yun, T.S., Moon, S.W. and Seo, Y.S. (2016), "Effect of particle shape on the shear strength of fault gouge", Geosci. J., 20(3), 351-359. https://doi.org/10.1007/s12303-015-0051-0.
- Li, Y., Huang, R., Chan, L.S. and Chen, J. (2013), "Effects of particle shape on shear strength of clay-gravel mixture", KSCE J. Civil Eng., 17(4), 712-717. https://doi.org/10.1007/s12205-013-0003-z.
- Li, Z., Wang, Y.H., Ma, C.H. and Mok, C.M.B. (2017), "Experimental characterization and 3D DEM simulation of bond breakages in artificially cemented sands with different bond strengths when subjected to triaxial shearing", Acta Geotechnica, 12(5), 987-1002. https://doi.org/10.1007/s11440-017-0593-6.
- Liu, G., Feng, X.T., Jiang, Q., Yao, Z. and Li, S. (2017), "In situ observation of spalling process of intact rock mass at large cavern excavation", Eng. Geol., 226, 52-69. https://doi.org/10.1016/j.enggeo.2017.05.012.
- Liu, Z., Zhou, C., Lu, Y., Yang, X., Liang, Y. and Zhang, L. (2018), "Application of FRP bolts in monitoring the internal force of the rocks surrounding a mine-shield tunnel", Sensors, 18(9), 2763.https://doi.org/10.3390/s18092763.
- Liu, Z., Zhou, C., Su, D., Du, Z., Zhu, F. and Zhang, L. (2019), "Rheological deformation behavior of soft rocks under combination of compressive pressure and water-softening effects", Geotech. Test. J., 43(3), 737-757. https://doi.org/10.1520/GTJ20180342.
- Mahdevari, S. and Moarefvand, P. (2018), "Experimental investigation of fractal dimension effect on deformation modulus of an artificial bimrock", Bull. Eng. Geol. Environ., 77(4), 1729-1737. https://doi.org/10.1007/s10064-017-1074-8.
- Mahdevari, S., Moarefvand, P. and Mohammadzamani, D. (2020), "Considering the effect of block-to-matrix strength ratio on geomechanical parameters of bimrocks", Geotech. Geol. Eng., 38(5), 4501-4520. https://doi.org/10.1007/s10706-020-01304-7.
- Ozturk, C.A. and Nasuf, E. (2013), "Strength classification of rock material based on textural properties", Tunn. Undergr. Sp. Tech., 37, 45-54. https://doi.org/10.1016/j.tust.2013.03.005.
- Romanova, V.A., Balokhonov, R.R. and Schmauder, S. (2009), "The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite", Acta Materialia, 57(1), 97-107. https://doi.org/10.1016/j.actamat.2008.08.046.
- Sagong, M., Choi, I.Y., Lee, J.S. and Cho, C.S. (2020), "Shear strength behaviors of grouts under the blasting induced vibrations", Geomech. Eng., 21(2), 207-213. https://doi.org/10.12989/gae.2020.21.2.207.
- Savely, J.P. (1990), "Determination of shear strength of conglomerates using a caterpillar D9 ripper and comparison with alternative methods", Int. J. Min. Geol. Eng., 8(3), 203-225. https://doi.org/10.1007 / BF01554042. https://doi.org/10.1007/BF01554042
- Shakeri, M.R., Haeri, S.M., Shahrabi, M.M., Khosravi, A. and Sajadi, A.A. (2018), "An experimental study on mechanical behavior of a calcite cemented gravelly sand", Geotech. Test. J., 41(3), 494-507. https://doi.org/10.1520/GTJ20170095.
- Shaunik, D. and Singh, M. (2019), "Strength behaviour of a model rock intersected by non-persistent joint", J. Rock Mech. Geotech. Eng., 11(6), 1243-1255. https://doi.org/10.1016/j.jrmge.2019.01.004.
- Shen, B. (2014), "Coal mine roadway stability in soft rock: a case study", Rock Mech. Rock Eng., 47(6), 2225-2238. https://doi.org/10.1007/s00603-013-0528-y.
- Sonmez, H., Ercanoglu, M., Kalender, A.Y.C.A.N., Dagdelenler, G. and Tunusluoglu, C. (2016), "Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension", Int. J. Rock Mech. Min. Sci., 100(86), 91-103. https://doi.org/10.1016/j.ijmms.2016.03.022.
- Ulusay, R. and Erguler, Z.A. (2012), "Needle penetration test: evaluation of its performance and possible uses in predicting strength of weak and soft rocks", Eng. Geol., 149-150, 47-56. https://doi.org/10.1016/j.enggeo.2012.08.007.
- Xiao, Y., Yuan, Z., Lin, J., Ran, J., Dai, B., Chu, J. and Liu, H. (2019), "Effect of particle shape of glass beads on the strength and deformation of cemented sands", Acta Geotechnica, 14(6), 2123-2131. https://doi.org/10.1007/s11440-019-00830-w.
- Zhang, B., Li, S.C., Yang, X.Y., Xia, K.W., Liu, J.Y., Guo, S. and Wang, S.G. (2019), "The coalescence and strength of rock-like materials containing two aligned X-type flaws under uniaxial compression", Geomech. Eng., 17(1), 47-56. https://doi.org/10.12989/gae.2019.17.1.047.
- Zhang, Y., Jiang, Y., Asahina, D. and Wang, C. (2020), "Experimental and numerical investigation on shear failure behavior of rock-like samples containing multiple non-persistent joints", Rock Mech. Rock Eng., 53(10), 4717-4744. https://doi.org/10.1007/s00603-020-02186-0.
- Zhou, C.Y., Lu, Y.Q., Liu, Z. and Zhang. L.H. (2019), "An innovative acousto-optic-sensing-based triaxial testing system for rocks", Rock Mech. Rock Eng., 52(9), 3305-3321. https://doi.org/10.1007/s00603-019-01764-1.
- Zhou, C.Y., Yu, L.F., You, F., Liu, Z., Liang, Y.H. and Zhang. L.H. (2020a), "Coupled seepage and stress model and experiment verification for creep behavior of soft rock", Int. J. Geomech., 20(9), 04020146. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001774.
- Zhou, X.P., Bi, J., Deng, R.S. and Li, B. (2020b), "Effects of brittleness on crack behaviors in rock-like materials", J. Test. Eval., 48(4), 2829-2851. https://doi.org/10.1520/JTE20170595.