DOI QR코드

DOI QR Code

Reliability analysis-based safety factor for stability of footings on frictional soils

  • Received : 2022.02.11
  • Accepted : 2023.04.18
  • Published : 2023.06.25

Abstract

The design of foundations based on a deterministic approach may not be safe and reliable occasionally, since soils sometimes show considerable spatial variability, and thus, significant uncertainties in turn affect the estimation of footing bearing capacity. The design of footing on cohesionless stratums on the basis of reliability analysis has not received much attention. This paper performs two-dimensional random finite difference analyses of shallow strip footings on a spatially variable frictional soil considering correlation structure. Friction angle (ϕ) is considered as a log-normally distributed random variable and Monte Carlo Simulation is then performed to determine the statistical response based on the random fields. A new approach reliability-based safety factor is defined based on various reliability levels by considering the coefficient of variation of ϕ and correlation length in both the horizontal and vertical directions. The comparison of the probabilistic safety factor and the conventional one illustrates the limitations of the deterministic safety factor and provides insight into how the heterogeneity of soils properties affects the required safety factor. Results show that the conventional safety factor of 3 can be conservative in some cases, especially for soil with low values of mean ϕ and COVϕ.

Keywords

References

  1. Al-Bittar, T. and Soubra, A.H. (2017), "Bearing capacity of spatially random rock masses obeying Hoek-Brown failure criterion", Georisk., 11(2), 215-229. https://doi.org/10.1080/17499518.2016.1232831.
  2. Baecher, G.B. and Christian, J.T. (2005), Reliability and Statistics in Geotechnical Engineering, John Wiley and Sons, West Sussex, UK.
  3. Barakat, S., Alzubaidi, R. and Omar, M. (2015), "Probabilistic-based assessment of the bearing capacity of shallow foundations", Arab. J. Geosci., 8(8), 6441-6457. https://doi.org/10.1007/s12517-014-1581-x.
  4. Cherubini, C. (2000), "Reliability evaluation of shallow foundation bearing capacity on c'φ'soils", Can. Geotech. J., 37(1), 264-269. https://doi.org/10.1139/t99-096.
  5. Duncan, J.M. (2000), "Factors of safety and reliability in geotechnical engineering", J. Geotech. Geoenviron. Eng., 126(4), 307-316. https://doi.org/10.1061/(asce)1090-0241(2000)126:4(307).
  6. El-Ramly, H., Morgenstern, N.R. and Cruden, D.M. (2002), "Probabilistic slope stability analysis for practice", Can. Geotech. J., 39(3), 665-683. https://doi.org/10.1139/t02-034.
  7. Erickson, H.L. and Drescher, A. (2002), "Bearing capacity of circular footings", J. Geotech., Geoenviron. Eng., 128(1), 38-43. https://doi.org/10.1061/(asce)1090-0241(2002)128:1(38).
  8. Fazeli Dehkordi, P., Karim, U.F.A, Ghazavi, M. and Ganjian, N. (2019), "Stochastic analysis of the capacity of two parallel footings on a thin sand layer.", Proc. Inst. Civ. Eng. Geotech. Eng., 172(4), 355-364. https://doi.org/10.1680/jgeen.18.00094.
  9. Fei, S., Tan, X., Gong, W., Dong, X., Zha, F. and Xu, L. (2021), "Reliability analysis of strip footing under rainfall using KL-FORM.", Geomech. Eng., 24(2), 167-178. https://doi.org/10.12989/gae.2021.24.2.167.
  10. Fenton, G.A. and Griffiths, D.V. (2003), "Bearing-capacity prediction of spatially random c φ soils", Can. Geotech. J., 40(1), 54-65. https://doi.org/10.1139/t02-086
  11. Fenton, G.A. and Griffiths, D.V. (2008), Risk Assessment in Geotechnical Engineering, John Wiley and Sons, Hoboken, NJ, USA. https://doi.org/10.1139/t02-086.
  12. Ghazavi, M. and Fazeli Dehkordi, P. (2021), "Interference influence on behavior of shallow footings constructed on soils, past studies to future forecast: A state-of-the-art review", Transportation Geotechnics, 27, 100502.
  13. Ghazavi, M. and Lavasan, A.A. (2008), "Interference effect of shallow foundations constructed on sand reinforced with geosynthetics", Geotext. Geomembranes., 26(5), 404-415. https://doi.org/10.1016/j.geotexmem.2008.02.003.
  14. Ghazavi, M., Norouzi, M. and Fazeli Dehkordi, P. (2023), "Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study", Geomech. Eng., 32(6), 653-671. https://doi.org/10.12989/gae.2023.32.6.653.
  15. Ghazavi, M., Tafazzoli Moghaddam, P. and Fazeli Dehkordi, P. (2021), "Stochastic analysis for bearing capacity determination of shallow foundations on thin-tilted anisotropic soils", Int. J. Geomech., 21(8), 04021145. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002107.
  16. Griffiths, D.V. and Fenton, G.A. (2001), "Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited", Geotechnique., 51(4), 351-359. https://doi.org/10.1680/geot.2001.51.4.351.
  17. Griffiths, D.V., Fenton, G.A. and Manoharan, N. (2002), "Bearing capacity of rough rigid strip footing on cohesive soil: probabilistic study", J. Geotech. Geoenviron. Eng., 128(9), 743-755. https://doi.org/10.1061/(asce)1090-0241(2002)128:9(743).
  18. Griffiths, D.V., Fenton, G.A. and Manoharan, N. (2006), "Undrained bearing capacity of two-strip footings on spatially random soil", Int. J. Geomech., 6(6), 421-427. https://doi.org/10.1061/(asce)1532-3641(2006)6:6(421).
  19. Griffiths, D.V., Huang, J. and Fenton, G.A. (2011), "Probabilistic infinite slope analysis", Comput. Geotech., 38(4), 577-584. https://doi.org/10.1016/j.compgeo.2011.03.006.
  20. Guo, X., Dias, D., and Pan, Q. (2019), "Probabilistic stability analysis of an embankment dam considering soil spatial variability", Comput. Geotech., 113, 103093. https://doi.org/10.1016/j.compgeo.2019.103093.
  21. Halder, K. and Chakraborty, D. (2019), "Influence of soil spatial variability on the response of strip footing on geocell-reinforced slope", Comput. Geotech., 122, 103533.
  22. Halder, K. and Chakraborty, D. (2020). "Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope", Geomech. Eng., 23(1), 15-30. https://doi.org/10.1016/j.compgeo.2020.103533.
  23. Imanzadeh, S., Breysse, D., Baroth, J., Dias, D., Piegay, N. and Elachachi, S.M. (2020), "Probabilistic comparative analysis between design rules of a shallow foundation safety", Georisk., 14(2), 128-141. https://doi.org/10.1080/17499518.2019.1598561.
  24. Itasca Consulting Group. (2011), FLAC-Fast Lagrangian analysis of continua theory and background (version 7.0). MN. Itasca Consulting Group, Inc.
  25. Kamien, D.J. (1997). Engineering and design: Introduction to probability and reliability methods for use in geotechnical engineering. Corps of Engineers Washington DC.
  26. Kasama, K. and Whittle, A.J. (2011), "Bearing capacity of spatially random cohesive soil using numerical limit analyses", J. Geotech. Geoenviron. Eng., 137(11), 989-996. https://doi.org/10.1061/(asce)gt.1943-5606.0000531.
  27. Kawa, M. and Pula, W. (2020), "3D bearing capacity probabilistic analyses of footings on spatially variable c-φ soil", Acta Geotech., 15(6), 1453-1466. https://doi.org/10.1007/S11440-019-00853-3.
  28. Lacasse, S. and Nadim, F. (1997), "Uncertainties in characterising soil properties", Publikasjon-Norges Geotekniske Institutt., 201, 49-75.
  29. Li, J., Tian, Y. and Cassidy, M.J. (2015), "Failure mechanism and bearing capacity of footings buried at various depths in spatially random soil", J. Geotech. Geoenviron. Eng., 141(2), 04014099. https://doi.org/10.1061/(asce)gt.1943-5606.0001219.
  30. Li, Y., Fenton, G.A., Hicks, M.A. and Xu, N. (2021), "Probabilistic bearing capacity prediction of square footings on 3D spatially varying cohesive soils", J. Geotech. Geoenviron. Eng., 147(6), 04021035. https://doi.org/10.1061/(asce)gt.1943-5606.0002538.
  31. Luo, N., Bathurst, R.J. and Javankhoshdel, S. (2016), "Probabilistic stability analysis of simple reinforced slopes by finite element method", Comput. Geotech., 77, 45-55. https://doi.org/10.1016/j.compgeo.2016.04.001
  32. Meyerhof, G.G. (1995), "Development of geotechnical limit state design", Can. Geotech. J., 32(1), 128-136. https://doi.org/10.1139/t95-010.
  33. Pan, Q. and Dias, D. (2017), "Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis", Acta Geotech., 12(6), 1415-1429. https://doi.org/10.1007/s11440-017-0541-5.
  34. Phoon, K.K. and Kulhawy, F.H. (1999), "Characterization of geotechnical variability.", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.
  35. Pieczynska, J., Pula, W., Griffiths, D.V. and Fenton, G.A. (2011), "Probabilistic characteristics of strip footing bearing capacity evaluated by random finite element method", Proceedings of the 11th Int. conf. App. Stat. Prob. Soil Struct. Eng. (ICASP), Zurich.
  36. Popescu, R., Deodatis, G. and Nobahar, A. (2005), "Effects of random heterogeneity of soil properties on bearing capacity", Probabilist. Eng. Mech., 20(4), 324-341. https://doi.org/10.1016/j.probengmech.2005.06.003.
  37. Pula, W. and Zaskorski, L. (2015), "Estimation of the probability distribution of the random bearing capacity of cohesionless soil using the random finite element method", Struct. Infrastruct. E., 11(5), 707-720. https://doi.org/10.1080/15732479.2014.903501.
  38. Ranjbar Pouya, K., Zhalehjoo, N. and Jamshidi Chenari, R. (2014), "Influence of random heterogeneity of cross-correlated strength parameters on bearing capacity of shallow foundations", Indian Geotech. J., 44(4), 427-435. https://doi.org/10.1007/s40098-013-0096-9.
  39. Rezaie Soufi, G., Jamshidi Chenari, R. and Karimpour Fard, M. (2020), "Influence of random heterogeneity of the friction angle on bearing capacity factor Nγ", Georisk., 14(1), 69-89. https://doi.org/10.1080/17499518.2019.1566554.
  40. Shahin, M.A. and Cheung, E.M. (2011a), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. https://doi.org/10.12989/gae.2011.3.2.153.
  41. Shahin, M. and Cheung, E.M. (2011b), "Probabilistic analysis of bearing capacity of strip footings", Geotech. Safety Risk., Munich, Germany, ISGSR 2011.
  42. Shakir, R.R. (2019), "Probabilistic-based analysis of a shallow square footing using Monte Carlo simulation", Int. J. Eng. Sci. Tech., 22(1), 313-333. https://doi.org/10.1016/j.jestch.2018.08.011.
  43. Shen, Z., Jin, D., Pan, Q., Yang, H. and Chian, S.C. (2020), "Probabilistic analysis of strip footings on spatially variable soils with linearly increasing shear strength", Comput. Geotech., 126, 103653. https://doi.org/10.1016/j.compgeo.2020.103653.
  44. Shu, S., Gao, Y. and Wu, Y. (2020), "Probabilistic bearing capacity analysis of spudcan foundation in soil with linearly increasing mean undrained shear strength", Ocean Eng., 204, 106800. https://doi.org/10.1016/j.oceaneng.2019.106800.
  45. Shu, S., Gao, Y., Wu, Y. and Ye, Z. (2021), "Undrained bearing capacity of two strip footings on a spatially variable soil with linearly increasing mean strength", Int. J. Geomech., 21(2), 06020037. https://doi.org/10.1061/(asce)gm.1943-5622.0001904.
  46. Simoes, J.T., Neves, L.C., Antao, A.N. and Guerra, N.M. (2020), "Reliability assessment of shallow foundations on undrained soils considering soil spatial variability", Comput. Geotech., 119, 103369. https://doi.org/10.1016/j.compgeo.2019.103369.
  47. Srivastava, A. and Babu, G.S. (2009), "Effect of soil variability on the bearing capacity of clay and in slope stability problems", Eng. Geol., 108(1-2), 142-152. https://doi.org/10.1016/j.enggeo.2009.06.023.
  48. Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2017.13.4.641.
  49. Vanmarcke, E.H. (1977), "Probabilistic modeling of soil profiles", J. Geotech. Eng. Div., 103(11), 1227-1246. https://doi.org/10.1061/AJGEB6.0000517
  50. Viviescas, J.C., Mattos, A.J. and Osorio, J.P. (2021), "Uncertainty quantification in the bearing capacity estimation for shallow foundations in sandy soils", Georisk., 15(3), 182-195. https://doi.org/10.1080/17499518.2020.1753782.
  51. Wang, T., Zhou, G., Wang, J. and Wang, D. (2020), "Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline", Geomech. Eng., 20(1), 19-28. https://doi.org/10.12989/gae.2020.20.1.019.
  52. Wu, Y., Zhou, X., Gao, Y. and Shu, S. (2020), "Bearing capacity of embedded shallow foundations in spatially random soils with linearly increasing mean undrained shear strength", Comput. Geotech., 122, 103508. https://doi.org/10.1016/j.compgeo.2020.103508.
  53. Wu, Y., Zhou, X., Gao, Y., Zhang, L. and Yang, J. (2019), "Effect of soil variability on bearing capacity accounting for non-stationary characteristics of undrained shear strength", Comput. Geotech., 110, 199-210. https://doi.org/10.1016/j.compgeo.2019.02.003.
  54. Ye, Z., Gao, Y., Shu, S. and Wu, Y. (2021), "Probabilistic undrained bearing capacity of skirted foundations under HM combined loading in spatially variable soils", Ocean Eng., 219, 108297. https://doi.org/10.1016/j.oceaneng.2020.108297.