DOI QR코드

DOI QR Code

Prognostic biomarkers and molecular pathways mediating Helicobacter pylori-induced gastric cancer: a network-biology approach

  • Farideh Kamarehei (Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences) ;
  • Massoud Saidijam (Research Center for Molecular Medicine, Hamadan University of Medical Sciences) ;
  • Amir Taherkhani (Research Center for Molecular Medicine, Hamadan University of Medical Sciences)
  • Received : 2022.11.14
  • Accepted : 2023.01.02
  • Published : 2023.03.31

Abstract

Cancer of the stomach is the second most frequent cancer-related death worldwide. The survival rate of patients with gastric cancer (GC) remains fragile. There is a requirement to discover biomarkers for prognosis approaches. Helicobacter pylori in the stomach is closely associated with the progression of GC. We identified the genes associated with poor/favorable prognosis in H. pylori-induced GC. Multivariate statistical analysis was applied on the Gene Expression Omnibus (GEO) dataset GSE54397 to identify differentially expressed miRNAs (DEMs) in gastric tissues with H. pylori-induced cancer compared with the H. pylori-positive with non-cancerous tissue. A protein interaction map (PIM) was built and subjected to DEMs targets. The enriched pathways and biological processes within the PIM were identified based on substantial clusters. Thereafter, the most critical genes in the PIM were illustrated, and their prognostic impact in GC was investigated. Considering p-value less than 0.01 and |Log2 fold change| as >1, five microRNAs demonstrated significant changes among the two groups. Gene functional analysis revealed that the ubiquitination system, neddylation pathway, and ciliary process are primarily involved in H. pylori-induced GC. Survival analysis illustrated that the overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was associated with poor prognosis, while increased MRPS5 expression was related to a favorable prognosis in GC patients. DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered prognostic biomarkers for H. pylori-induced GC. However, experimental validation is necessary in the future.

Keywords

Acknowledgement

The authors would like to thank the Research Center for Molecular Medicine and the Deputy of Research and Technology, Hamadan University of Medical Sciences, Hamadan - Iran, for their support.

References

  1. Hayakawa Y, Sethi N, Sepulveda AR, Bass AJ, Wang TC. Oesophageal adenocarcinoma and gastric cancer: should we mind the gap? Nat Rev Cancer 2016;16:305-318. https://doi.org/10.1038/nrc.2016.24
  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-E386. https://doi.org/10.1002/ijc.29210
  3. Zhen Y, Guanghui L, Xiefu Z. Knockdown of EGFR inhibits growth and invasion of gastric cancer cells. Cancer Gene Ther 2014;21:491-497. https://doi.org/10.1038/cgt.2014.55
  4. Kurokawa Y, Matsuura N, Kawabata R, Nishikawa K, Ebisui C, Yokoyama Y, et al. Prognostic impact of major receptor tyrosine kinase expression in gastric cancer. Ann Surg Oncol 2014;21 Suppl 4:S584-S590. https://doi.org/10.1245/s10434-014-3690-x
  5. Nielsen TO, Friis-Hansen L, Poulsen SS, Federspiel B, Sorensen BS. Expression of the EGF family in gastric cancer: downregulation of HER4 and its activating ligand NRG4. PLoS One 2014;9:e94606.
  6. Melo FF, Batista SA, et al. STAT3 polymorphism and Helicobacter pylori CagA strains with higher number of EPIYA-C segments independently increase the risk of gastric cancer. BMC Cancer 2015;15:528.
  7. Polk DB, Peek RM. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010;10:403-414. https://doi.org/10.1038/nrc2857
  8. Chang S, Liu J, Guo S, He S, Qiu G, Lu J, et al. HOTTIP and HOXA13 are oncogenes associated with gastric cancer progression. Oncol Rep 2016;35:3577-3585. https://doi.org/10.3892/or.2016.4743
  9. Zhang H, Ma RR, Wang XJ, Su ZX, Chen X, Shi DB, et al. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer. Oncogene 2017;36:5609-5619. https://doi.org/10.1038/onc.2017.163
  10. Niu Q, Zhu J, Yu X, Feng T, Ji H, Li Y, et al. Immune response in H. pylori-associated gastritis and gastric cancer. Gastroenterol Res Pract 2020;2020:9342563.
  11. Li Q, Yu H. The role of non-H. pylori bacteria in the development of gastric cancer. Am J Cancer Res 2020;10:2271-2281.
  12. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000;404:398-402. https://doi.org/10.1038/35006081
  13. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R, et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst 2002;94:1680-1687. https://doi.org/10.1093/jnci/94.22.1680
  14. El-Omar EM, Rabkin CS, Gammon MD, Vaughan TL, Risch HA, Schoenberg JB, et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 2003;124:1193-1201. https://doi.org/10.1016/S0016-5085(03)00157-4
  15. Machado JC, Figueiredo C, Canedo P, Pharoah P, Carvalho R, Nabais S, et al. A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology 2003;125:364-371. https://doi.org/10.1016/S0016-5085(03)00899-0
  16. Rocha GA, Guerra JB, Rocha AM, Saraiva IE, da Silva DA, de Oliveira CA, et al. IL1RN polymorphic gene and cagA-positive status independently increase the risk of noncardia gastric carcinoma. Int J Cancer 2005;115:678-683. https://doi.org/10.1002/ijc.20935
  17. Gobert AP, Wilson KT. Polyamine- and NADPH-dependent generation of ROS during Helicobacter pylori infection: a blessing in disguise. Free Radic Biol Med 2017;105:16-27. https://doi.org/10.1016/j.freeradbiomed.2016.09.024
  18. Peterson AJ, Menheniott TR, O'Connor L, Walduck AK, Fox JG, Kawakami K, et al. Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 2010;139: 2005-2017. https://doi.org/10.1053/j.gastro.2010.08.043
  19. Cheng AS, Li MS, Kang W, Cheng VY, Chou JL, Lau SS, et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 2013;144:122-133. https://doi.org/10.1053/j.gastro.2012.10.002
  20. den Hartog G, Chattopadhyay R, Ablack A, Hall EH, Butcher LD, Bhattacharyya A, et al. Regulation of Rac1 and reactive oxygen species production in response to infection of gastrointestinal epithelia. PLoS Pathog 2016;12:e1005382.
  21. Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 2014;20: 10432-10439. https://doi.org/10.3748/wjg.v20.i30.10432
  22. Lan H, Tang Z, Jin H, Sun Y. Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells. Sci Rep 2016;6:24218.
  23. Wei J, Zhao ZX, Li Y, Zhou ZQ, You TG. Cortactin expression confers a more malignant phenotype to gastric cancer SGC-7901 cells. World J Gastroenterol 2014;20:3287-3300. https://doi.org/10.3748/wjg.v20.i12.3287
  24. Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 2014;5:2276-2292. https://doi.org/10.18632/oncotarget.1902
  25. Han M, Ma L, Qu Y, Tang Y. Decreased expression of the ATM gene linked to poor prognosis for gastric cancer of different nationalities in Xinjiang. Pathol Res Pract 2017;213:908-914. https://doi.org/10.1016/j.prp.2017.05.012
  26. Villanueva MT. Therapeutics: gastric cancer gets a red carpet treatment. Nat Rev Cancer 2014;14:648.
  27. Hu L, Bai ZG, Ma XM, Bai N, Zhang ZT. MRFAP1 plays a protective role in neddylation inhibitor MLN4924-mediated gastric cancer cell death. Eur Rev Med Pharmacol Sci 2018;22:8273-8280.
  28. Wu Y, Yun D, Zhao Y, Wang Y, Sun R, Yan Q, et al. Down regulation of RNA binding motif, single-stranded interacting protein 3, along with up regulation of nuclear HIF1A correlates with poor prognosis in patients with gastric cancer. Oncotarget 2017;8: 1262-1277. https://doi.org/10.18632/oncotarget.13605
  29. Yan M, Parker BA, Schwab R, Kurzrock R. HER2 aberrations in cancer: implications for therapy. Cancer Treat Rev 2014;40:770-780. https://doi.org/10.1016/j.ctrv.2014.02.008
  30. Naruke A, Azuma M, Takeuchi A, Ishido K, Katada C, Sasaki T, et al. Comparison of site-specific gene expression levels in primary tumors and synchronous lymph node metastases in advanced gastric cancer. Gastric Cancer 2015;18:262-270. https://doi.org/10.1007/s10120-014-0357-z
  31. Jiang L, Chen Y, Sang J, Li Y, Lan T, Wang Y, et al. Type II cGMP-dependent protein kinase inhibits activation of key members of the RTK family in gastric cancer cells. Biomed Rep 2013;1: 399-404. https://doi.org/10.3892/br.2013.85
  32. Nagatsuma AK, Aizawa M, Kuwata T, Doi T, Ohtsu A, Fujii H, et al. Expression profiles of HER2, EGFR, MET and FGFR2 in a large cohort of patients with gastric adenocarcinoma. Gastric Cancer 2015;18:227-238. https://doi.org/10.1007/s10120-014-0360-4
  33. Zhang J, Cao J, Li J, Zhang Y, Chen Z, Peng W, et al. A phase I study of AST1306, a novel irreversible EGFR and HER2 kinase inhibitor, in patients with advanced solid tumors. J Hematol Oncol 2014;7:22.
  34. Lim JY, Yoon SO, Hong SW, Kim JW, Choi SH, Cho JY. Thioredoxin and thioredoxin-interacting protein as prognostic markers for gastric cancer recurrence. World J Gastroenterol 2012;18: 5581-5588. https://doi.org/10.3748/wjg.v18.i39.5581
  35. Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time? Cancers (Basel) 2010;2:190-208. https://doi.org/10.3390/cancers2010190
  36. Rivera C, Oliveira AK, Costa RAP, De Rossi T, Paes Leme AF. Prognostic biomarkers in oral squamous cell carcinoma: a systematic review. Oral Oncol 2017;72:38-47. https://doi.org/10.1016/j.oraloncology.2017.07.003
  37. Bao G, Qiao Q, Zhao H, He X. Prognostic value of HMGB1 overexpression in resectable gastric adenocarcinomas. World J Surg Oncol 2010;8:52.
  38. Santini D, Vincenzi B, Fratto ME, Perrone G, Lai R, Catalano V, et al. Prognostic role of human equilibrative transporter 1 (hENT1) in patients with resected gastric cancer. J Cell Physiol 2010;223: 384-388. https://doi.org/10.1002/jcp.22045
  39. Ooki A, Yamashita K, Kikuchi S, Sakuramoto S, Katada N, Watanabe M. Phosphatase of regenerating liver-3 as a prognostic biomarker in histologically node-negative gastric cancer. Oncol Rep 2009;21:1467-1475.
  40. Kim JS, Kim MA, Kim TM, Lee SH, Kim DW, Im SA, et al. Biomarker analysis in stage III-IV (M0) gastric cancer patients who received curative surgery followed by adjuvant 5-fluorouracil and cisplatin chemotherapy: epidermal growth factor receptor (EGFR) associated with favourable survival. Br J Cancer 2009;100:732-738. https://doi.org/10.1038/sj.bjc.6604936
  41. Kim YJ, Kim MA, Im SA, Kim TM, Kim DW, Yang HK, et al. Metastasis-associated protein S100A4 and p53 predict relapse in curatively resected stage III and IV (M0) gastric cancer. Cancer Invest 2008;26:152-158. https://doi.org/10.1080/07357900701518909
  42. Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, et al. Circulating microRNAs in cancer: potential and challenge. Front Genet 2019;10:626.
  43. Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) 2016;40:88-101. https://doi.org/10.1038/ijo.2015.170
  44. Holley CL, Topkara VK. An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Ther 2011;25: 151-159. https://doi.org/10.1007/s10557-011-6290-z
  45. Portius D, Sobolewski C, Foti M. MicroRNAs-dependent regulation of PPARs in metabolic diseases and cancers. PPAR Res 2017;2017:7058424.
  46. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis miRNA genes. Plant Physiol 2005; 138:2145-2154. https://doi.org/10.1104/pp.105.062943
  47. Michlewski G, Caceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019;25:1-16. https://doi.org/10.1261/rna.068692.118
  48. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015;15:321-333. https://doi.org/10.1038/nrc3932
  49. Dimova DK, Dyson NJ. The E2F transcriptional network: old acquaintances with new faces. Oncogene 2005;24:2810-2826. https://doi.org/10.1038/sj.onc.1208612
  50. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018;9:402.
  51. Mahfuz A, Zubair-Bin-Mahfuj AM, Podder DJ. A network-biology approach for identification of key genes and pathways involved in malignant peritoneal mesothelioma. Genomics Inform 2021;19:e16.
  52. de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab 2011;96:3326-3336. https://doi.org/10.1210/jc.2011-1004
  53. Erler P, Keutgen XM, Crowley MJ, Zetoune T, Kundel A, Kleiman D, et al. Dicer expression and microRNA dysregulation associate with aggressive features in thyroid cancer. Surgery 2014;156:1342-1350. https://doi.org/10.1016/j.surg.2014.08.007
  54. Chou CK, Liu RT, Kang HY. MicroRNA-146b: a novel biomarker and therapeutic target for human papillary thyroid cancer. Int J Mol Sci 2017;18:636.
  55. Huang Y, Liao D, Pan L, Ye R, Li X, Wang S, et al. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAFV600E mutation. Eur J Endocrinol 2013;168: 675-681. https://doi.org/10.1530/EJE-12-1029
  56. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010;11:136-146. https://doi.org/10.1016/S1470-2045(09)70343-2
  57. Taherkhani A, Farrokhi Yekta R, Mohseni M, Saidijam M, Arefi Oskouie A. Chronic kidney disease: a review of proteomic and metabolomic approaches to membranous glomerulonephritis, focal segmental glomerulosclerosis, and IgA nephropathy biomarkers. Proteome Sci 2019;17:7.
  58. Yang Q, Tian GL, Qin JW, Wu BQ, Tan L, Xu L, et al. Coupling bootstrap with synergy self-organizing map-based orthogonal partial least squares discriminant analysis: stable metabolic biomarker selection for inherited metabolic diseases. Talanta 2020;219:121370.
  59. Draghici S, Khatri P, Eklund AC, Szallasi Z. Reliability and reproducibility issues in DNA microarray measurements. Trends Genet 2006;22:101-109. https://doi.org/10.1016/j.tig.2005.12.005
  60. Bakay M, Chen YW, Borup R, Zhao P, Nagaraju K, Hoffman EP. Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinformatics 2002;3:4.
  61. Bammler T, Beyer RP, Bhattacharya S, Boorman GA, Boyles A, Bradford BU, et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2005;2:351-356. https://doi.org/10.1038/nmeth754
  62. Taherkhani A, Moradkhani S, Orangi A, Jalalvand A, Khamverdi Z. Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition. J Basic Clin Physiol Pharmacol 2020;32:1105-1119. https://doi.org/10.1515/jbcpp-2020-0036
  63. Ho PT, Clark IM, Le LT. MicroRNA-based diagnosis and therapy. Int J Mol Sci 2022;23:7167.
  64. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011;39:7223-7233. https://doi.org/10.1093/nar/gkr254
  65. Pattarayan D, Thimmulappa RK, Ravikumar V, Rajasekaran S. Diagnostic potential of extracellular microRNA in respiratory diseases. Clin Rev Allergy Immunol 2018;54:480-492. https://doi.org/10.1007/s12016-016-8589-9
  66. Mraz M, Malinova K, Mayer J, Pospisilova S. MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun 2009;390:1-4. https://doi.org/10.1016/j.bbrc.2009.09.061
  67. Bayat Z, Farhadi Z, Taherkhani A. Identification of potential biomarkers associated with poor prognosis in oral squamous cell carcinoma through integrated bioinformatics analysis: a pilot study. Gene Rep 2021;24:101243.
  68. Yue H, Zhu H, Luo D, Du Q, Xie Y, Huang S, et al. Differentially expressed genes in nasopharyngeal carcinoma tissues and their correlation with recurrence and metastasis of nasopharyngeal carcinoma. Comput Math Methods Med 2022;2022:1941412.
  69. Chang H, Kim N, Park JH, Nam RH, Choi YJ, Lee HS, et al. Different microRNA expression levels in gastric cancer depending on Helicobacter pylori infection. Gut Liver 2015;9:188-196. https://doi.org/10.5009/gnl13371
  70. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res 2013;41:D991-D995. https://doi.org/10.1093/nar/gks1193
  71. Taherkhani A, Dehto SS, Jamshidi S, Shojaei S. Pathogenesis and prognosis of primary oral squamous cell carcinoma based on microRNAs target genes: a systems biology approach. Genomics Inform 2022;20:e27.
  72. Wang Y, Wang YS, Hu NB, Teng GS, Zhou Y, Bai J. Bioinformatics analysis of core genes and key pathways in myelodysplastic syndrome. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2022;30:804-812.
  73. Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep 2020;10:20560.
  74. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015;12:697.
  75. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25:1091-1093. https://doi.org/10.1093/bioinformatics/btp101
  76. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 2003;31:258-261. https://doi.org/10.1093/nar/gkg034
  77. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-2504. https://doi.org/10.1101/gr.1239303
  78. Bayat Z, Mirzaeian A, Taherkhani A. Potential biomarkers and signaling pathways associated with the pathogenesis of primary ameloblastoma: a systems biology approach. Int J Dent 2022; 2022:3316313.
  79. Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011;39:D691-D697. https://doi.org/10.1093/nar/gkq1018
  80. Li J, Wang Y, Wang X, Yang Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis. World J Surg Oncol 2020;18:50.
  81. Oskouie AA, Ahmadi MS, Taherkhani A. Identification of prognostic biomarkers in papillary thyroid cancer and developing non-Invasive diagnostic models through integrated bioinformatics analysis. Microrna 2022;11:73-87. https://doi.org/10.2174/2211536611666220124115445
  82. Bayat Z, Ahmadi-Motamayel F, Parsa MS, Taherkhani A. Potential biomarkers and signaling pathways associated with the pathogenesis of primary salivary gland carcinoma: a bioinformatics study. Genomics Inform 2021;19:e42.
  83. Manoochehri H, Jalali A, Tanzadehpanah H, Taherkhani A, Saidijam M. Identification of key gene targets for sensitizing colorectal cancer to chemoradiation: an integrative network analysis on multiple transcriptomics data. J Gastrointest Cancer 2022;53: 649-668. https://doi.org/10.1007/s12029-021-00690-2
  84. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017;45:W98-W102. https://doi.org/10.1093/nar/gkx247
  85. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics: tissue-based map of the human proteome. Science 2015;347:1260419.
  86. Parizadeh SM, Jafarzadeh-Esfehani R, Avan A, Ghandehari M, Goldani F, Parizadeh SM. The prognostic and predictive value of microRNAs in patients with H. pylori-positive gastric cancer. Curr Pharm Design 2018;24:4639-4645. https://doi.org/10.2174/1381612825666190110144254
  87. Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell 2017;169:792-806. https://doi.org/10.1016/j.cell.2017.04.023
  88. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001;70:503-533. https://doi.org/10.1146/annurev.biochem.70.1.503
  89. Dye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 2007;36:131-150. https://doi.org/10.1146/annurev.biophys.36.040306.132820
  90. He M, Zhou Z, Wu G, Chen Q, Wan Y. Emerging role of DUBs in tumor metastasis and apoptosis: therapeutic implication. Pharmacol Ther 2017;177:96-107. https://doi.org/10.1016/j.pharmthera.2017.03.001
  91. Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-beta-dependent cancer metastasis. J Clin Invest 2014;124:564-579. https://doi.org/10.1172/JCI71104
  92. Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X, et al. CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut 2013;62:496-508. https://doi.org/10.1136/gutjnl-2011-301522
  93. Black JC, Whetstine JR. RNF2 E3 or not to E3: dual roles of RNF2 overexpression in melanoma. Cancer Discov 2015;5: 1241-1243. https://doi.org/10.1158/2159-8290.CD-15-1285
  94. Qiu D, Wang Q, Wang Z, Chen J, Yan D, Zhou Y, et al. RNF185 modulates JWA ubiquitination and promotes gastric cancer metastasis. Biochim Biophys Acta Mol Basis Dis 2018;1864:1552-1561. https://doi.org/10.1016/j.bbadis.2018.02.013
  95. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009;458:732-736. https://doi.org/10.1038/nature07884
  96. Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009;78:399-434. https://doi.org/10.1146/annurev.biochem.78.101807.093809
  97. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 2006;6:369-381. https://doi.org/10.1038/nrc1881
  98. Zhao Y, Sun Y. Cullin-RING ligases as attractive anti-cancer targets. Curr Pharm Design 2013;19:3215-3225. https://doi.org/10.2174/13816128113199990300
  99. Jia L, Sun Y. SCF E3 ubiquitin ligases as anticancer targets. Curr Cancer Drug Targets 2011;11:347-356. https://doi.org/10.2174/156800911794519734
  100. Sun Y. E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia 2006;8:645-654. https://doi.org/10.1593/neo.06376
  101. Li H, Tan M, Jia L, Wei D, Zhao Y, Chen G, et al. Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis. J Clin Invest 2014;124:835-846. https://doi.org/10.1172/JCI70297
  102. Sun Y, Li H. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase. Protein Cell 2013;4:103-116. https://doi.org/10.1007/s13238-012-2105-7
  103. Enchev RI, Schulman BA, Peter M. Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 2015;16:30-44. https://doi.org/10.1038/nrm3919
  104. Zhou L, Zhang W, Sun Y, Jia L. Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal 2018;44:92-102. https://doi.org/10.1016/j.cellsig.2018.01.009
  105. Zhao Y, Morgan MA, Sun Y. Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal 2014;21:2383-2400. https://doi.org/10.1089/ars.2013.5795
  106. Li L, Wang M, Yu G, Chen P, Li H, Wei D, et al. Overactivated neddylation pathway as a therapeutic target in lung cancer. J Natl Cancer Inst 2014;106:dju083.
  107. Nawrocki ST, Griffin P, Kelly KR, Carew JS. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs 2012;21:1563-1573. https://doi.org/10.1517/13543784.2012.707192
  108. Swords RT, Erba HP, DeAngelo DJ, Bixby DL, Altman JK, Maris M, et al. Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol 2015;169:534-543. https://doi.org/10.1111/bjh.13323
  109. Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 2010; 67:1025-1048. https://doi.org/10.1007/s00018-009-0213-1
  110. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 2007;448:807-810. https://doi.org/10.1038/nature06030
  111. Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez-Buylla A. Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 2009;15:1062-1065. https://doi.org/10.1038/nm.2020
  112. Schraml P, Frew IJ, Thoma CR, Boysen G, Struckmann K, Krek W, et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod Pathol 2009;22:31-36. https://doi.org/10.1038/modpathol.2008.132
  113. Reilova-Velez J, Seiler MW. Abnormal cilia in a breast carcinoma: an ultrastructural study. Arch Pathol Lab Med 1984;108: 795-797.
  114. Yuan K, Frolova N, Xie Y, Wang D, Cook L, Kwon YJ, et al. Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J Histochem Cytochem 2010;58:857-870. https://doi.org/10.1369/jhc.2010.955856
  115. Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH Jr, et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009;15: 1055-1061. https://doi.org/10.1038/nm.2011
  116. Jansen S, Gosens R, Wieland T, Schmidt M. Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharmacol Ther 2018;183:1-21. https://doi.org/10.1016/j.pharmthera.2017.09.002
  117. Zhang H, Nie W, Zhang X, Zhang G, Li Z, Wu H, et al. NEDD4-1 regulates migration and invasion of glioma cells through CNrasGEF ubiquitination in vitro. PLoS One 2013;8:e82789.
  118. Yan D, Li F, Hall ML, Sage C, Hu WH, Giallourakis C, et al. An isoform of GTPase regulator DOCK4 localizes to the stereocilia in the inner ear and binds to harmonin (USH1C). J Mol Biol 2006;357:755-764. https://doi.org/10.1016/j.jmb.2006.01.017
  119. Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, et al. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol 2010; 190:461-477. https://doi.org/10.1083/jcb.201005141
  120. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017;45:D158-D169. https://doi.org/10.1093/nar/gkw1099
  121. Ungefroren H, Witte D, Lehnert H. The role of small GTPases of the Rho/Rac family in TGF-beta-induced EMT and cell motility in cancer. Dev Dyn 2018;247:451-461. https://doi.org/10.1002/dvdy.24505
  122. Westbrook JA, Wood SL, Cairns DA, McMahon K, Gahlaut R, Thygesen H, et al. Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer. J Pathol 2019;247:381-391. https://doi.org/10.1002/path.5197
  123. Li H, Wang M, Zhou H, Lu S, Zhang B. Long noncoding RNA EBLN3P promotes the progression of liver cancer via alteration of microRNA-144-3p/DOCK4 signal. Cancer Manag Res 2020;12:9339-9349. https://doi.org/10.2147/CMAR.S261976
  124. Wilson CH, McIntyre RE, Arends MJ, Adams DJ. The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min/+) mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene 2010;29:4567-4575. https://doi.org/10.1038/onc.2010.202
  125. Ueyama H, Yao T, Nakashima Y, Hirakawa K, Oshiro Y, Hirahashi M, et al. Gastric adenocarcinoma of fundic gland type (chief cell predominant type): proposal for a new entity of gastric adenocarcinoma. Am J Surg Pathol 2010;34:609-619. https://doi.org/10.1097/PAS.0b013e3181d94d53
  126. Ikuta K, Seno H, Chiba T. Molecular changes leading to gastric cancer: a suggestion from rare-type gastric tumors with GNAS mutations. Gastroenterology 2014;146:1417-1418. https://doi.org/10.1053/j.gastro.2014.03.025
  127. Vieth M, Kushima R, Borchard F, Stolte M. Pyloric gland adenoma: a clinico-pathological analysis of 90 cases. Virchows Arch 2003;442:317-321. https://doi.org/10.1007/s00428-002-0750-6
  128. Matsubara A, Sekine S, Kushima R, Ogawa R, Taniguchi H, Tsuda H, et al. Frequent GNAS and KRAS mutations in pyloric gland adenoma of the stomach and duodenum. J Pathol 2013;229:579-587. https://doi.org/10.1002/path.4153
  129. Liu L, Li Z, Feng G, You W, Li J. Expression of connective tissue growth factor is in agreement with the expression of VEGF, VEGF-C, -D and associated with shorter survival in gastric cancer. Pathol Int 2007;57:712-718. https://doi.org/10.1111/j.1440-1827.2007.02162.x
  130. Liu LY, Han YC, Wu SH, Lv ZH. Expression of connective tissue growth factor in tumor tissues is an independent predictor of poor prognosis in patients with gastric cancer. World J Gastroenterol 2008;14:2110-2114. https://doi.org/10.3748/wjg.14.2110
  131. Jiang CG, Lv L, Liu FR, Wang ZN, Liu FN, Li YS, et al. Downregulation of connective tissue growth factor inhibits the growth and invasion of gastric cancer cells and attenuates peritoneal dissemination. Mol Cancer 2011;10:122.
  132. Li J, Gao X, Ji K, Sanders AJ, Zhang Z, Jiang WG, et al. Differential expression of CCN family members CYR611, CTGF and NOV in gastric cancer and their association with disease progression. Oncol Rep 2016;36:2517-2525. https://doi.org/10.3892/or.2016.5074
  133. Guo W, Dong Z, Guo Y, Chen Z, Yang Z, Kuang G, et al. Polymorphisms of transforming growth factor-beta1 associated with increased risk of gastric cardia adenocarcinoma in north China. Int J Immunogenet 2011;38:215-224. https://doi.org/10.1111/j.1744-313X.2010.00991.x
  134. Bhayal AC, Prabhakar B, Rao KP, Penchikala A, Ayesha Q, Jyothy A, et al. Role of transforming growth factor-beta1 -509 C/T promoter polymorphism in gastric cancer in south Indian population. Tumour Biol 2011;32:1049-1053. https://doi.org/10.1007/s13277-011-0208-z
  135. Lin XD, Li C, Shi Y, Chen Y, Zhang LY, Zheng XW. Correlation of polymorphism of Nme1-1465 T>C and TGFbeta1-509 T>C with genetic susceptibility of gastric carcinoma. Zhonghua Bing Li Xue Za Zhi 2010;39:681-685.
  136. Zhang P, Di JZ, Zhu ZZ, Wu HM, Wang Y, Zhu G, et al. Association of transforming growth factor-beta 1 polymorphisms with genetic susceptibility to TNM stage I or II gastric cancer. Jpn J Clin Oncol 2008;38:861-866. https://doi.org/10.1093/jjco/hyn111
  137. Lindholm C, Quiding-Jarbrink M, Lonroth H, Hamlet A, Svennerholm AM. Local cytokine response in Helicobacter pylori-infected subjects. Infect Immun 1998;66:5964-5971. https://doi.org/10.1128/IAI.66.12.5964-5971.1998
  138. Messa C, Di Leo A, Greco B, Caradonna L, Amati L, Linsalata M, et al. Successful eradicating treatment of Helicobacter pylori in patients with chronic gastritis: gastric levels of cytokines, epidermal growth factor and polyamines before and after therapy. Immunopharmacol Immunotoxicol 1996;18:1-13. https://doi.org/10.3109/08923979609007106
  139. Jayapal M, Melendez AJ. DNA microarray technology for target identification and validation. Clin Exp Pharmacol Physiol 2006;33:496-503. https://doi.org/10.1111/j.1440-1681.2006.04398.x
  140. Leask A, Holmes A, Black CM, Abraham DJ. Connective tissue growth factor gene regulation: requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem 2003;278:13008-13015. https://doi.org/10.1074/jbc.M210366200
  141. Ball DK, Moussad EE, Rageh MA, Kemper SA, Brigstock DR. Establishment of a recombinant expression system for connective tissue growth factor (CTGF) that models CTGF processing in utero. Reproduction 2003;125:271-284. https://doi.org/10.1530/rep.0.1250271
  142. Rio MC, Bellocq JP, Daniel JY, Tomasetto C, Lathe R, Chenard MP, et al. Breast cancer-associated pS2 protein: synthesis and secretion by normal stomach mucosa. Science 1988;241:705-708. https://doi.org/10.1126/science.3041593
  143. Soutto M, Peng D, Katsha A, Chen Z, Piazuelo MB, Washington MK, et al. Activation of beta-catenin signalling by TFF1 loss promotes cell proliferation and gastric tumorigenesis. Gut 2015;64:1028-1039. https://doi.org/10.1136/gutjnl-2014-307191
  144. Soutto M, Belkhiri A, Piazuelo MB, Schneider BG, Peng D, Jiang A, et al. Loss of TFF1 is associated with activation of NF-kappaB-mediated inflammation and gastric neoplasia in mice and humans. J Clin Invest 2011;121:1753-1767. https://doi.org/10.1172/JCI43922
  145. Carvalho R, Kayademir T, Soares P, Canedo P, Sousa S, Oliveira C, et al. Loss of heterozygosity and promoter methylation, but not mutation, may underlie loss of TFF1 in gastric carcinoma. Lab Invest 2002;82:1319-1326. https://doi.org/10.1097/01.LAB.0000029205.76632.A8
  146. Tomita H, Takaishi S, Menheniott TR, Yang X, Shibata W, Jin G, et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology 2011;140:879-891. https://doi.org/10.1053/j.gastro.2010.11.037
  147. McChesney PA, Aiyar SE, Lee OJ, Zaika A, Moskaluk C, Li R, et al. Cofactor of BRCA1: a novel transcription factor regulator in upper gastrointestinal adenocarcinomas. Cancer Res 2006; 66:1346-1353. https://doi.org/10.1158/0008-5472.CAN-05-3593
  148. Zhou L, Wu Y, Xin L, Zhou Q, Li S, Yuan Y, et al. Development of RNA binding proteins expression signature for prognosis prediction in gastric cancer patients. Am J Transl Res 2020;12:6775-6792.
  149. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, et al. A reference map of the human binary protein interactome. Nature 2020;580:402-408. https://doi.org/10.1038/s41586-020-2188-x
  150. Liarmakopoulos E, Gazouli M, Aravantinos G, Theodoropoulos G, Rizos S, Vaiopoulou A, et al. E-Selectin S128R gene polymorphism in gastric cancer. Int J Biol Markers 2013;28:38-42. https://doi.org/10.5301/JBM.2012.9582
  151. Xia HZ, Du WD, Wu Q, Chen G, Zhou Y, Tang XF, et al. E-selectin rs5361 and FCGR2A rs1801274 variants were associated with increased risk of gastric cancer in a Chinese population. Mol Carcinog 2012;51:597-607. https://doi.org/10.1002/mc.20828
  152. Alexiou D, Karayiannakis AJ, Syrigos KN, Zbar A, Sekara E, Michail P, et al. Clinical significance of serum levels of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in gastric cancer patients. Am J Gastroenterol 2003;98:478-485. https://doi.org/10.1111/j.1572-0241.2003.07259.x
  153. Yoo NC, Chung HC, Chung HC, Park JO, Rha SY, Kim JH, et al. Synchronous elevation of soluble intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) correlates with gastric cancer progression. Yonsei Med J 1998;39:27-36. https://doi.org/10.3349/ymj.1998.39.1.27
  154. Ke JJ, Shao QS, Ling ZQ. Expression of E-selectin, integrin beta1 and immunoglobulin superfamily member in human gastric carcinoma cells and its clinicopathologic significance. World J Gastroenterol 2006;12:3609-3611. https://doi.org/10.3748/wjg.v12.i22.3609
  155. Maruo Y, Gochi A, Kaihara A, Shimamura H, Yamada T, Tanaka N, et al. ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int J Cancer 2002;100:486-490. https://doi.org/10.1002/ijc.10514
  156. Li YH, Shao JY, Li S, Zou BY, Huang HQ, Guan ZZ. Clinical significance of quantitative analysis of serum VEGF, CD44s, and MMP-3 protein in nasopharyngeal carcinoma. Ai Zheng 2004;23:1060-1064.
  157. Arguello-Ramirez J, Perez-Cardenas E, Delgado-Chavez R, Solorza-Luna G, Villa-Trevino S, Arenas-Huertero F. Matrix metalloproteinases-2, -3, and -9 secreted by explants of benign and malignant lesions of the uterine cervix. Int J Gynecol Cancer 2004;14:333-340. https://doi.org/10.1111/j.1048-891x.2004.014218.x
  158. Mylona E, Magkou C, Giannopoulou I, Agrogiannis G, Markaki S, Keramopoulos A, et al. Expression of tissue inhibitor of matrix metalloproteinases (TIMP)-3 protein in invasive breast carcinoma: relation to tumor phenotype and clinical outcome. Breast Cancer Res 2006;8:R57.
  159. Mino N, Takenaka K, Sonobe M, Miyahara R, Yanagihara K, Otake Y, et al. Expression of tissue inhibitor of metalloproteinase-3 (TIMP-3) and its prognostic significance in resected non-small cell lung cancer. J Surg Oncol 2007;95:250-257. https://doi.org/10.1002/jso.20663
  160. Islekel H, Oktay G, Terzi C, Canda AE, Fuzun M, Kupelioglu A. Matrix metalloproteinase-9,-3 and tissue inhibitor of matrix metalloproteinase-1 in colorectal cancer: relationship to clinicopathological variables. Cell Biochem Funct 2007;25:433-441. https://doi.org/10.1002/cbf.1325
  161. Liu H, Zhao YR, Chen B, Ge Z, Huang JS. High expression of SMARCE1 predicts poor prognosis and promotes cell growth and metastasis in gastric cancer. Cancer Manag Res 2019;11: 3493-3509. https://doi.org/10.2147/CMAR.S195137
  162. Welsh SJ, Bellamy WT, Briehl MM, Powis G. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 2002;62:5089-5095.
  163. Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2005;102:673-678. https://doi.org/10.1073/pnas.0408732102
  164. Kim SJ, Miyoshi Y, Taguchi T, Tamaki Y, Nakamura H, Yodoi J, et al. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin Cancer Res 2005;11: 8425-8430. https://doi.org/10.1158/1078-0432.CCR-05-0449
  165. Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD, et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 2000;164:6287-6295. https://doi.org/10.4049/jimmunol.164.12.6287
  166. Nishinaka Y, Nishiyama A, Masutani H, Oka S, Ahsan KM, Nakayama Y, et al. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: implications for adult T-cell leukemia leukemogenesis. Cancer Res 2004;64:1287-1292. https://doi.org/10.1158/0008-5472.CAN-03-0908
  167. Kwon HJ, Won YS, Nam KT, Yoon YD, Jee H, Yoon WK, et al. Vitamin D(3) upregulated protein 1 deficiency promotes N-methyl-N-nitrosourea and Helicobacter pylori-induced gastric carcinogenesis in mice. Gut 2012;61:53-63. https://doi.org/10.1136/gutjnl-2011-300361
  168. Ossandon FJ, Villarroel C, Aguayo F, Santibanez E, Oue N, Yasui W, et al. In silico analysis of gastric carcinoma serial analysis of gene expression libraries reveals different profiles associated with ethnicity. Mol Cancer 2008;7:22.