Acknowledgement
이 논문은 부경대학교 자율창의학술연구비(2023년)에 의하여 연구되었음.
References
- Bagnold, R., 1939. Interim report on wave-pressure research. Journal of the Institution of Civil Engineers, 12, pp.202-226. https://doi.org/10.1680/ijoti.1939.14539
- Denner, F. Xiao, C.N. and Wachem, B.G.M., 2018. Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretization. Journal of Computational Physics, 367, pp.192-234. https://doi.org/10.1016/j.jcp.2018.04.028
- Kwakkela, M. Breugema, W.P. and Boersma, B.J., 2013. Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model. Journal of Computational Physics, 253, pp.166-188. https://doi.org/10.1016/j.jcp.2013.07.005
- Lafeber, W. Brosset, L. and Bogaert, H., 2012. Comparison of wave impact tests at large and full scale: results from the sloshel project. Proceedings of the Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece, 17-22 June 2012.
- Liu, K. and Pletcher, R.H., 2007. A fractional step method for solving the compressible Navier-Stokes equations. Journal of Computational Physics, 226(2), pp.1930-1951. https://doi.org/10.1016/j.jcp.2007.06.026
- Lugni, C. Brocchini, M. and Faltinsen, O.M., 2010. Evolution of the air cavity during a depressurized wave impact. II. The dynamic field. Physics of Fluids, 22, 056102.
- Luo, M. Koh, C.G. Bai, W. and Gao, M., 2016. A particle method for two-phase flows with compressible air pocket. International Journal for Numerical Methods in Engineering, 108(7), pp.695-721. https://doi.org/10.1002/nme.5230
- Shin, S., 2019. Variation in air cushion effects caused by isentropic and isothermal processes of entrapped air in incompressible free surface flows. Journal of Computational Fluids Engineering, 24(3), pp.76-83. https://doi.org/10.6112/kscfe.2019.24.3.076
- Shin, S., 2020. Simulation of compressibility of entrapped air in an incompressible free surface flow using a pressure-based method for unified equations. International Journal for Numerical Methods in Fluids, 92(10), pp.1274-1289. https://doi.org/10.1002/fld.4827
- Shin, S., 2021. Simulation of a pulsating air pocket in a sloshing tank using unified conservation laws and HCIB method. Journal of the Society of Naval Architects of Korea, 58(5), pp.271-280. https://doi.org/10.3744/SNAK.2021.58.5.271
- Sun, H. Sun, Z. Liang, S. and Zhao, X., 2019. Numerical study of air compressibility effects in breaking wave impacts using a CIP-based model. Ocean Engineering, 174, pp.159-168. https://doi.org/10.1016/j.oceaneng.2019.01.050
- Wang, B.S. Li, P. Gao, Z. and Don, W.S., 2018. An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. Journal of Computational Physics, 374, pp.469-477. https://doi.org/10.1016/j.jcp.2018.07.052
- Wei, Z. Jiang, Q. and Nie, S., 2021. A pressure-based numerical scheme for compressible-incompressible two- phase flows. International Journal for Numerical Methods in Fluids, 93(11), pp.3215-3230. https://doi.org/10.1002/fld.5029
- Yokoi, K., 2013. A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model: numerical simulations of droplet splashing. Journal of Computational Physics, 232, pp.252-271. https://doi.org/10.1016/j.jcp.2012.08.034
- Zhu, J. and Qiu, J., 2016. A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. Journal of Computational Physics, 318, pp.110-121. https://doi.org/10.1016/j.jcp.2016.05.010