DOI QR코드

DOI QR Code

구동기 비선형 모델을 이용한 워터제트 추진 무인수상정의 조이스틱기반 이접안 제어 알고리즘

Joystick Control Algorithm for Berthing and Unberthing of Waterjet Propelled Unmanned Surface Vehicle Using Actuator Nonlinear Model

  • 안성진 (충남대학교 메카트로닉스공학과) ;
  • 원문철 (충남대학교 메카트로닉스공학과) ;
  • 김선영 (한국해양과학기술원 부설 선박해양플랜트연구소 해양공공디지털연구본부) ;
  • 박한솔 (한국해양과학기술원 부설 선박해양플랜트연구소 해양공공디지털연구본부)
  • Seong-Jin Ahn (Dept. of Mechatronics Engineering, Chungnam National University) ;
  • Mooncheol Won (Dept. of Mechatronics Engineering, Chungnam National University) ;
  • Sun Young Kim (Korea Research Institute of Ships & Ocean Engineering, Ocean and Maritine Digital Technology Research Division) ;
  • Hansol Park (Korea Research Institute of Ships & Ocean Engineering, Ocean and Maritine Digital Technology Research Division)
  • 투고 : 2023.01.04
  • 심사 : 2023.04.04
  • 발행 : 2023.06.20

초록

Unmanned Surface Vehicle (USV)'s berthing and unberthing is the most difficult maneuvering tasks and have the highest risk of accidents. In this paper, we designed a berthing/unberthing control algorithm given human joystick command for an USV equipped with a waterjet and a bow thruster. The berthing and unberthing maneuvers are performed remotely by a joystick operator at the Ground Control Center (GCC) where the status of USV and environmental situation can be monitored. We interpret the human joystick commands into USV's desired speed, yaw rate, and heading angle commands. next, we developed a control algorithm for the desired target values of MIMO actuators (engine speed, bucket step, nozzle angle, and bow thruster state) to follow the interpreted commands. The validity of the control algorithm is confirmed through simulations and sea trials at Gwang Am port.

키워드

과제정보

본 논문은 중소벤처기업부의 재원으로 국가연구개발사업인 "해양수산재해 탐지용 무인선 실증"(1425157873) 및 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구(P0008473)입니다.

참고문헌

  1. Aschemann, H., Wirtensohn, S. and Reuter, J., 2016. Nonlinear observer-based ship control and disturbance compensation. IFAC-Papers Online, 49(23), pp.297-302. https://doi.org/10.1016/j.ifacol.2016.10.358
  2. Fossen, T., 1999. Guidance and control of ocean vehicles. Ph.D. University of Trondheim.
  3. Fossen, T.I., 2002. Marine Control Systems. Marine Cybernetics: Trondhiem.
  4. Hasegawa, K., and Kitera, K., 1993. Automatic berthing control system using network and knowledge-base. Journal of Kansai Society of Naval Architecture of Japan, 220, pp.135-143.
  5. Hong, S.K., Jung, Y.H., Won, M.C. and Kim, S.Y., 2007. Development of control algorithm for ship berthing and unberthing systems using a joystick. Journal of Korean Navigation and Port Research, 31(5), pp.325-332. https://doi.org/10.5394/KINPR.2007.31.5.325
  6. Im, N.K. and Hasegawa, K., 2002. Motion identification using neural networks and its application to automatic ship. Journal of Ship and Ocean Technology, 6(1), pp.16-26.
  7. Slotine, J.J.E. and Li, W., 1991. Applied nonlinear control. Englewood Cliffs, NJ: Prentice Hall.
  8. Won, M.C., Hong, S.K., Jung, Y.H., Kim, S.Y., Son, N.S. and Yoon, H.G., 2006. Development of nonlinear control algorithm for automatic berthing of ships. Proceedings of the Korea Committee for Ocean Resources and Engineering Conference, Korean Society of Ocean Engineers, 2006. pp.359-362.
  9. Yamato, H., Koyama, T. and Nakagawa, T., 1992. Automatic berthing using the expert system. IFAC Proceedings Volumes, 25(3), pp.173-184. https://doi.org/10.1016/S1474-6670(17)50288-8
  10. Yoon, H.K., and Kim, S.Y., 2005. A study on the model test scheme for establishing the mathematical model of hydrodynamic force and moment acting on a slowly moving ship. Journal of the Society of Naval Architects of Korea, 42(2), pp.98-104. https://doi.org/10.3744/SNAK.2005.42.2.098