DOI QR코드

DOI QR Code

PI_BPNN controller for transient response improvement of LLC resonant converter

  • Hokyeong Kim (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Jinwoo Kim (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Taehoon Chin (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Hongseok Choi (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Younghoon Cho (Department of Electrical and Electronics Engineering, Konkuk University)
  • Received : 2022.11.21
  • Accepted : 2023.01.31
  • Published : 2023.06.20

Abstract

This paper proposes the proportional integral (PI) backpropagation neural network (BPNN) algorithm to improve the transient voltage control performance in an LLC resonant converter whose voltage gain is highly nonlinear. In the proposed method, the PI linear controller roughly regulates the operating frequency of the LLC converter according to the voltage gain. Moreover, the BPNN nonlinear controller compensates for the frequency in the transient and steady states. It also improves the dynamics. Compared with traditional artificial neural network algorithms, the proposed BPNN can reduce the computational burden of the digital controller and improve the accuracy of the time-series prediction by reflecting previously predicted results in the learning process. Hence, the proposed method is suitable for real-time applications, such as power electronic converters. The structure and the learning procedure of the proposed PI-BPNN controller are explained in detail, together with the modeling and the control scheme of the LLC converter. A 5.5 kW LLC converter prototype is built and tested to verify the performance of the proposed method. The load step experimental results show that compared with the traditional PI control algorithm, the proposed PI-BPNN reduces the transient response time by up to 25%.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the government of Korea (MSIT) (No. 2021R1A5A1031868) and by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20204010600220).

References

  1. Blaabjerg, F., Wang, H., Vernica, I., Liu, B., Davari, P.: Reliability of power electronic systems for EV/HEV applications. Proc. IEEE 109(6), 1060-1076 (2021) https://doi.org/10.1109/JPROC.2020.3031041
  2. Kang, S., Kim, H., Cho, B.: Adaptive voltage-controlled oscillator for improved dynamic performance in LLC resonant converter. IEEE Trans. Ind. Appl. 52(2), 1652-1659 (2016)
  3. Hussain, S., Mokhtar, M., Howe, J.M.: Sensor failure detection, identification, and accommodation using fully connected cascade neural network. IEEE Trans. Ind. Electron. 62(3), 1683-1692 (2015) https://doi.org/10.1109/TIE.2014.2361600
  4. Wai, R.J., Chen, M.W., Liu, Y.K.: Design of adaptive control and fuzzy neural network control for single-stage boost inverter. IEEE Trans. Ind. Electron. 62(9), 5434-5445 (2015) https://doi.org/10.1109/TIE.2015.2408571
  5. Guillod, T., Papamanolis, P., Kolar, J.W.: Artificial neural network (ANN) based fast and accurate inductor modeling and design. IEEE Open J. Power Electron. 1, 284-299 (2020) https://doi.org/10.1109/OJPEL.2020.3012777
  6. Novak, M., Xie, H., Dragicevic, T., Wang, F., Rodriguez, J., Blaabjerg, F.: Optimal cost function parameter design in predictive torque control (PTC) using artifcial neural networks (ANN). IEEE Trans. Ind. Electron. 68(8), 7309-7319 (2021) https://doi.org/10.1109/TIE.2020.3009607
  7. Wen, L., Li, X., Gao, L., Zhang, Y.: A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 65(7), 5990-5998 (2018) https://doi.org/10.1109/TIE.2017.2774777
  8. Ghate, V.N., Dudul, S.V.: Cascade neural-network-based fault classifier for three-phase induction motor. IEEE Trans. Ind. Electron. 58(5), 1555-1563 (2011) https://doi.org/10.1109/TIE.2010.2053337
  9. Cheng, L., Liu, W., Hou, Z.G., Yu, J., Tan, M.: Neural-network-based nonlinear model predictive control for piezoelectric actuators. IEEE Trans. Ind. Electron. 62(12), 7717-7727 (2015) https://doi.org/10.1109/TIE.2015.2455026
  10. Mohamed, I.S., Rovetta, S., Do, T.D., Dragicevic, T., Diab, A.A.Z.: A neural-network-based model predictive control of three-phase inverter with an output LC filter. IEEE Access 7, 124737-124749 (2019) https://doi.org/10.1109/ACCESS.2019.2938220
  11. Dragicevic, T., Novak, M.: Weighting factor design in model predictive control of power electronic converters: an artificial neural network approach. IEEE Trans. Ind. Electron. 66(11), 8870-8880 (2019) https://doi.org/10.1109/TIE.2018.2875660
  12. Wang, D., et al.: Model predictive control using artificial neural network for power converters. IEEE Trans. Ind. Electron. 69(4), 3689-3699 (2022) https://doi.org/10.1109/TIE.2021.3076721
  13. Liu, X., et al.: Predictor-based neural network finite-set predictive control for modular multilevel converter. IEEE Trans. Ind. Electron. 68(11), 11621-11627 (2021) https://doi.org/10.1109/TIE.2020.3036214
  14. Sun, Y., Li, S., Lin, B., Fu, X., Ramezani, M., Jaithwa, I.: Artificial neural network for control and grid integration of residential solar photovoltaic systems. IEEE Trans. Sustain. Energy. 8(4), 1484-1495 (2017) https://doi.org/10.1109/TSTE.2017.2691669
  15. Fu, X., Li, S., Jaithwa, I.: Implement optimal vector control for LCL-filter-based grid-connected converters by using recurrent neural networks. IEEE Trans. Ind. Electron. 62(7), 4443-4454 (2015) https://doi.org/10.1109/TIE.2015.2390140
  16. Burton, B., Harley, R.G.: Reducing the computational demands of continually online-trained artificial neural networks for system identifcation and control of fast processes. IEEE Trans. Ind. Appl. 34(3), 589-596 (1998) https://doi.org/10.1109/28.673730
  17. Shatnawi, Y., Al-khassaweneh, M.: Fault diagnosis in internal combustion engines using extension neural network. IEEE Trans. Ind. Electron. 61(3), 1434-1443 (2014) https://doi.org/10.1109/TIE.2013.2261033
  18. Lee, W.S., Kim, J.H., Lee, J.Y., Lee, I.O.: Design of an isolated DC/DC topology with high efficiency of over 97% for EV fast chargers. IEEE Trans. Veh. Technol. 68(12), 11725-11737 (2019) https://doi.org/10.1109/TVT.2019.2949080
  19. Ta, L.A.D., Dao, N.D., Lee, D.: High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 35(8), 8324-8334 (2020) https://doi.org/10.1109/TPEL.2020.2968084
  20. Lee, S.Y., Lee, W.S., Lee, J.Y., et al.: High-efficiency 11 kW bi-directional on-board charger for EVs. J. Power Electron. 22, 363-376 (2022) https://doi.org/10.1007/s43236-021-00344-3