Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the government of Korea (MSIT) (No. 2021R1A5A1031868) and by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20204010600220).
References
- Blaabjerg, F., Wang, H., Vernica, I., Liu, B., Davari, P.: Reliability of power electronic systems for EV/HEV applications. Proc. IEEE 109(6), 1060-1076 (2021) https://doi.org/10.1109/JPROC.2020.3031041
- Kang, S., Kim, H., Cho, B.: Adaptive voltage-controlled oscillator for improved dynamic performance in LLC resonant converter. IEEE Trans. Ind. Appl. 52(2), 1652-1659 (2016)
- Hussain, S., Mokhtar, M., Howe, J.M.: Sensor failure detection, identification, and accommodation using fully connected cascade neural network. IEEE Trans. Ind. Electron. 62(3), 1683-1692 (2015) https://doi.org/10.1109/TIE.2014.2361600
- Wai, R.J., Chen, M.W., Liu, Y.K.: Design of adaptive control and fuzzy neural network control for single-stage boost inverter. IEEE Trans. Ind. Electron. 62(9), 5434-5445 (2015) https://doi.org/10.1109/TIE.2015.2408571
- Guillod, T., Papamanolis, P., Kolar, J.W.: Artificial neural network (ANN) based fast and accurate inductor modeling and design. IEEE Open J. Power Electron. 1, 284-299 (2020) https://doi.org/10.1109/OJPEL.2020.3012777
- Novak, M., Xie, H., Dragicevic, T., Wang, F., Rodriguez, J., Blaabjerg, F.: Optimal cost function parameter design in predictive torque control (PTC) using artifcial neural networks (ANN). IEEE Trans. Ind. Electron. 68(8), 7309-7319 (2021) https://doi.org/10.1109/TIE.2020.3009607
- Wen, L., Li, X., Gao, L., Zhang, Y.: A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 65(7), 5990-5998 (2018) https://doi.org/10.1109/TIE.2017.2774777
- Ghate, V.N., Dudul, S.V.: Cascade neural-network-based fault classifier for three-phase induction motor. IEEE Trans. Ind. Electron. 58(5), 1555-1563 (2011) https://doi.org/10.1109/TIE.2010.2053337
- Cheng, L., Liu, W., Hou, Z.G., Yu, J., Tan, M.: Neural-network-based nonlinear model predictive control for piezoelectric actuators. IEEE Trans. Ind. Electron. 62(12), 7717-7727 (2015) https://doi.org/10.1109/TIE.2015.2455026
- Mohamed, I.S., Rovetta, S., Do, T.D., Dragicevic, T., Diab, A.A.Z.: A neural-network-based model predictive control of three-phase inverter with an output LC filter. IEEE Access 7, 124737-124749 (2019) https://doi.org/10.1109/ACCESS.2019.2938220
- Dragicevic, T., Novak, M.: Weighting factor design in model predictive control of power electronic converters: an artificial neural network approach. IEEE Trans. Ind. Electron. 66(11), 8870-8880 (2019) https://doi.org/10.1109/TIE.2018.2875660
- Wang, D., et al.: Model predictive control using artificial neural network for power converters. IEEE Trans. Ind. Electron. 69(4), 3689-3699 (2022) https://doi.org/10.1109/TIE.2021.3076721
- Liu, X., et al.: Predictor-based neural network finite-set predictive control for modular multilevel converter. IEEE Trans. Ind. Electron. 68(11), 11621-11627 (2021) https://doi.org/10.1109/TIE.2020.3036214
- Sun, Y., Li, S., Lin, B., Fu, X., Ramezani, M., Jaithwa, I.: Artificial neural network for control and grid integration of residential solar photovoltaic systems. IEEE Trans. Sustain. Energy. 8(4), 1484-1495 (2017) https://doi.org/10.1109/TSTE.2017.2691669
- Fu, X., Li, S., Jaithwa, I.: Implement optimal vector control for LCL-filter-based grid-connected converters by using recurrent neural networks. IEEE Trans. Ind. Electron. 62(7), 4443-4454 (2015) https://doi.org/10.1109/TIE.2015.2390140
- Burton, B., Harley, R.G.: Reducing the computational demands of continually online-trained artificial neural networks for system identifcation and control of fast processes. IEEE Trans. Ind. Appl. 34(3), 589-596 (1998) https://doi.org/10.1109/28.673730
- Shatnawi, Y., Al-khassaweneh, M.: Fault diagnosis in internal combustion engines using extension neural network. IEEE Trans. Ind. Electron. 61(3), 1434-1443 (2014) https://doi.org/10.1109/TIE.2013.2261033
- Lee, W.S., Kim, J.H., Lee, J.Y., Lee, I.O.: Design of an isolated DC/DC topology with high efficiency of over 97% for EV fast chargers. IEEE Trans. Veh. Technol. 68(12), 11725-11737 (2019) https://doi.org/10.1109/TVT.2019.2949080
- Ta, L.A.D., Dao, N.D., Lee, D.: High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 35(8), 8324-8334 (2020) https://doi.org/10.1109/TPEL.2020.2968084
- Lee, S.Y., Lee, W.S., Lee, J.Y., et al.: High-efficiency 11 kW bi-directional on-board charger for EVs. J. Power Electron. 22, 363-376 (2022) https://doi.org/10.1007/s43236-021-00344-3