DOI QR코드

DOI QR Code

Adaptive robust control of active magnetic bearings rigid rotor systems

  • Yuhao Xu (School of Electrical Engineering, Tianjin University) ;
  • Xiaoyuan Wang (School of Electrical Engineering, Tianjin University) ;
  • Mingxin Liu (School of Electrical Engineering, Tianjin University) ;
  • Na Li (School of Electrical Engineering, Tianjin University) ;
  • Tian Yu (School of Electrical Engineering, Tianjin University)
  • Received : 2022.06.18
  • Accepted : 2022.12.07
  • Published : 2023.06.20

Abstract

Aiming at the problems of difficult decoupling, complex controller models, and poor disturbance rejection capability caused by the inherent nonlinear and strong coupling characteristics of the active magnetic bearing (AMB), an adaptive H-infinity robust control (AHRC) method is proposed in the AMBs-rigid rotor system. The proposed method combines the active disturbance rejection control (ADRC) with the robust control to achieve stable operation of the AMBs-rigid rotor system under high-speed conditions. First, a four-degree-of-freedom (4-DOF) AMBs-rigid rotor model was established and transformed into a one-degree-of-freedom (1-DOF) model for the design of the robust controller, which weakens the coupling effect between each of the degrees of freedom (DOF). Then the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) was used to find the relative optimal weighting function value of the H-infinite robust control (HRC), which solved the difficulties in the design of the robust controller for known controlled system models. In addition, by combining the optimized H-infinity robust controller with the original error feedback control rate in the ADRC, the proposed AHRC retains the strong robustness of the HRC and the decoupling capability of the ADRC, which improves the tracking performance and anti-disturbance performance of the controlled system. Simulation and experimental results verify the effectiveness of the proposed method.

Keywords

References

  1. Nguyen, T.D., Beng, G.F.H., Tseng, K.J., Vilathgamuwa, D.M., Zhang, X.: Modeling and position-sensorless control of a dual-airgap axial flux permanent magnet machine for flywheel energy storage systems. J. Power Electron. 12(5), 758-768 (2012)  https://doi.org/10.6113/JPE.2012.12.5.758
  2. Williamson, S.S., Rimmalapudi, S.C., Emadi, A.: Electrical modeling of renewable energy sources and energy storage devices. J.Power Electron. 4(2), 117-126 (2004) 
  3. Park, C.S., Kim, S.H., Park, G.G., Seok, J.K.: Active mechanical vibration control of rotary compressors for air-conditioning systems. J. Power Electron. 12(6), 1003-1010 (2012)  https://doi.org/10.6113/JPE.2012.12.6.1003
  4. Jung, T.-U.: Development of hybrid electric compressor motor drive system for hybrid electrical vehicles. J. Power Electron. 9(6), 960-968 (2009) 
  5. Ye, X., Xu, X., Wen, T., Han, B.: Design and optimization of repeatable locking/unlocking device for magnetically suspended control moment gyro. Acta Astronaut. 186, 24-32 (2021)  https://doi.org/10.1016/j.actaastro.2021.05.025
  6. Jesus, R.J.D.: Robust feedback linearization for nonlinear processes control. Isa Trans. 74, 155-164 (2018)  https://doi.org/10.1016/j.isatra.2018.01.017
  7. Dong, H.L., Jin, B.P., Joo, Y.H.: Robust H∞ control for uncertain nonlinear active magnetic bearing systems via Takagi-Sugeno fuzzy models. Int. J. Control Autom. Syst. 8(3), 636-646 (2010)  https://doi.org/10.1007/s12555-010-0317-2
  8. Pesch, A.H., Smirnov, A.: Magnetic bearing spindle tool tracking through mu-synthesis robust control. IEEE/ASME Trans. Mech. 20(3), 1448-1457 (2015)  https://doi.org/10.1109/TMECH.2014.2344592
  9. Noshadi, A., Shi, J., Lee, W.-S.: High performance H∞ control of non-minimum phase Active Magnetic Bearing system. Conference of the IEEE Industrial Electronics Society. IEEE (2015). 
  10. Lou, X., Zhang, X., Ye, Q.: Robust H∞ control for uncertain impulsive systems with input constraints and external disturbance. Int. J. Robust Nonlinear Control 32(4), 2330-2343 (2022)  https://doi.org/10.1002/rnc.5950
  11. Chen, L., Zhu, C., Zhong, Z.: Internal model control for the AMB high-speed flywheel rotor system based on modal separation and inverse system method. IET Electr. Power Appl. 13(3), 349-358 (2019)  https://doi.org/10.1049/iet-epa.2018.5646
  12. Yan, G.: High accuracy tracking of ultrasonic motor based on PID operation of sliding surface plus inverse system compensation. Sci Rep. (2022). https://doi.org/10.1038/s41598-022-10632-y 
  13. Li, Y.-M., Min, X., Tong, S.: Adaptive fuzzy inverse optimal control for uncertain strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 28(10), 2363-2374 (2020)  https://doi.org/10.1109/TFUZZ.2019.2935693
  14. Jeon, H.-W., Lee, C.-W.: Eigenvalue Assignment for stabilizing unstable conical modes of rigid rotor-active magnetic bearing system over high rotational speed range. In: Pennacchi, Paolo (ed.) Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, pp. 1453-1464. Springer International Publishing, Cham (2015) 
  15. Zheng, S., Qi, C., Ren, H.: Active balancing control of AMB-rotor systems using a phase-shift notch filter connected in parallel mode. IEEE Trans. Ind. Electron. 63(6), 3777-3785 (2016)  https://doi.org/10.1109/TIE.2016.2522948
  16. Cui, P., Wang, Q., Li, S.: Combined FIR and fractional-order repetitive control for harmonic current suppression of magnetically suspended rotor system. IEEE Trans. Ind. Electron. 6(6), 1-1 (2017) 
  17. Cong, P., Zhu, M., Wang, K.: A two-stage synchronous vibration control for magnetically suspended system in the full speed range. IEEE Trans. Ind. Electron. 67(99), 480 (2018) 
  18. Li, J., Liu, G., Cui, P.: Suppression of harmonic vibration in AMB-rotor systems using double-input adaptive frequency estimator. IEEE Trans. Ind. Electron. 69(99), 1-1 (2021) 
  19. Eissa, M., Saeed, N.A., El-Ganini, W.A.: Saturation-based active controller for vibration suppression of a four-degree-of-freedom rotor-AMB system. Nonlinear Dyn. 76(1), 743-746 (2013)  https://doi.org/10.1007/s11071-013-1166-3
  20. X. Wang and Y. Xu, "Multi-Physics Multi-Objective Optimal Design of 5-DOF Magnetic Bearing System with High-speed Permanent Magnet Synchronous Motor," 2021 24th International Conference on Electrical Machines and Systems (ICEMS), pp. 457-461 (2021).