DOI QR코드

DOI QR Code

High precision harmonic controller combined with repetitive and modulated model predictive controllers

  • Dongmin Choi (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Jung‑Yong Lee (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Seungil Choi (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Taehwan Ahn (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Younghoon Cho (Department of Electrical and Electronics Engineering, Konkuk University)
  • Received : 2023.01.10
  • Accepted : 2023.03.08
  • Published : 2023.06.20

Abstract

This paper proposes a high precision harmonic controller combined with repetitive and modulated model predictive controllers for standalone inverter applications. The proposed method is configured as a dual loop controller that includes an outer voltage controller with a plug-in repetitive controller (RC) and an inner current controller with a modulated model predictive controller (MMPC). The RC in the outer control loop effectively synthesizes the harmonic current reference when connecting a nonlinear load with a periodic harmonic current. Then, the MMPC-based current controller, with its ultra-wide bandwidth, regulates the harmonic current without additional harmonic current controllers. Thus, the abilities to precisely control the harmonic current and improve the output voltage quality are achieved. To combine the MMPC and the repetitive controller, an equivalent transfer function is derived from the ac sweep result of the MMPC. The stability of the RC is analyzed by applying the equivalent transfer function to the closed-loop voltage control model. To validate the performance of the proposed control method, a 3 kVA single phase 3-level T-type inverter prototype is built and tested. The harmonic compensation and dynamic performance of the proposed method are verified by simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20204010600220), and Korea Electric Power Corporation through Korea Electrical Engineering & Science Research Institute. [Grant number: R21XO01-46]

References

  1. Shen, G., Zhu, X., Zhang, J., Xu, D.: A new feedback method for PR current control of LCL-filter-based grid-connected inverter. IEEE. Trans. Ind. Electron. 57(6), 2033-2041 (2010) https://doi.org/10.1109/TIE.2010.2040552
  2. Lorenzini, C., Pereira, L.F.A., Bazanella, A.S., Silva, G.R.G.D.: Single-phase uninterruptible power supply control: a model-free proportional-multiresonant method. IEEE Trans. Ind. Electron. 69(3), 2967-2975 (2022) https://doi.org/10.1109/TIE.2021.3068664
  3. Lou, G., Yang, Q., Gu, W., Quan, X., Guerrero, J.M., Li, S.: Analysis and design of hybrid harmonic suppression scheme for VSG considering nonlinear loads and distorted grid. IEEE Trans. Energy. Conv. 36(4), 3096-3107 (2021) https://doi.org/10.1109/TEC.2021.3063607
  4. Jafarian, H., Kim, N., Parkhideh, B.: Decentralized control strategy for ac-stacked pv inverter architecture under grid background harmonics. IEEE J. Em. Select. Top. Power. Electron. 6(1), 84-93 (2018) https://doi.org/10.1109/JESTPE.2017.2773079
  5. Liu, Y., Wu, W., He, Y., Lin, Z., Blaabjerg, F., Chung, H.S.H.: An effcient and robust hybrid damper for LCL- or LLCL-based grid-tied inverter with strong grid-side harmonic voltage effect rejection. IEEE Trans. Ind. Electron. 63(2), 926-936 (2016) https://doi.org/10.1109/TIE.2015.2478738
  6. R. Nasiri and A. Radan,: Pole-placement control strategy for 4-leg voltage-source inverters. In: 2010 1st Power Electronic and Drive Systems and Technologies Conference (PEDSTC). pp 74-79
  7. Orts-Grau, S., Balaguer-Herrero, P., Alfonso-Gil, J.C., Martinez-Marquez, C.I., Martinez-Navarro, G., Gimeno-Sales, F.J., et al.: Switching pattern improvement for one-cycle zero-integral-error current controller. IEEE Access. 10, 158-167 (2022) https://doi.org/10.1109/ACCESS.2021.3137758
  8. Huang, S.S., Konishi, Y., Yang, Z.Z., Hsieh, M.J.: Observer-based capacitor current sensorless control applied to a single-phase inverter system with seamless transfer. IEEE Trans. Power. Electron. 34(3), 2819-2828 (2019) https://doi.org/10.1109/TPEL.2018.2840323
  9. Li, J., Sun, Y., Li, X., Xie, S., Lin, J., Su, M.: Observer-based adaptive control for single-phase UPS inverter under nonlinear load. IEEE Trans. Transport. Electrific. 8(3), 2785-2796 (2022) https://doi.org/10.1109/TTE.2022.3151759
  10. Pichan, M., Rastegar, H.: Sliding-mode control of four-leg inverter with fixed switching frequency for uninterruptible power supply applications. IEEE Trans. Ind. Electron. 64(8), 6805-6814 (2017) https://doi.org/10.1109/TIE.2017.2686346
  11. Repecho, V., Biel, D., Olm, J.M.: A Simple switching-frequency-regulated sliding-mode controller for a VSI with a full digital implementation. IEEE J. Em. Select. Top. Power Electron. 9(1), 569-579 (2021)
  12. Yuan L, Xiu C, Ma X (2022) Sliding mode control strategy for microgrid inverter systems. J. Power Electron. https://doi.org/10.1007/s43236-022-00576-x
  13. Mattavelli, P., Marafao, F.P.: Repetitive-based control for selective harmonic compensation in active power filters. IEEE Trans. Ind. Electron. 51(5), 1018-1024 (2004) https://doi.org/10.1109/TIE.2004.834961
  14. Lei, W., Nie, C., Chen, M., Wang, H., Wang, Y.: A fast-transient repetitive control strategy for programmable harmonic current source. J. Power Electron. 17, 172-180 (2017) https://doi.org/10.6113/JPE.2017.17.1.172
  15. Pan, G., Gong, F., Jin, L., Wu, H., Chen, S.: LCL APF based on fractional-order fast repetitive control strategy. J. Power Electron. 21, 1508-1519 (2021) https://doi.org/10.1007/s43236-021-00301-0
  16. Lv, Z.-K., Sun, L., Duan, J.-D., Tian, B., Qin, H.: Repetitive control with specific harmonic gain compensation for cascaded inverters under rectifier loads. J. Power Electron. 18, 1670-1682 (2018)
  17. Acuna, P., Moran, L., Rivera, M., Aguilera, R., Burgos, R., Agelidis, V.G.: A single-objective predictive control method for a multivariable single-phase three-level NPC converter-based active power filter. IEEE Trans. Ind. Electron. 62(7), 4598-4607 (2015) https://doi.org/10.1109/TIE.2015.2393556
  18. Ferreira, S.C., Gonzatti, R.B., Pereira, R.R., Silva, C.H.D., Silva, L.E.B.D., Lambert-Torres, G.: Finite control set model predictive control for dynamic reactive power compensation with hybrid active power filters. IEEE Trans. Ind. Electron. 65(3), 2608-2617 (2018) https://doi.org/10.1109/TIE.2017.2740819
  19. Antoniewicz, K., Jasinski, M., Kazmierkowski, M.P., Malinowski, M.: Model predictive control for three-level four-leg flying capacitor converter operating as shunt active power filter. IEEE Trans. Ind. Electron. 63(8), 5255-5262 (2016)
  20. Han, J., Zhao, P., Yao, G., Chen, H., Wang, Y., Benbouzid, M., et al.: Model predictive current control of asymmetrical hybrid cascaded multilevel inverter. J. Power Electron. 22, 580-592 (2022) https://doi.org/10.1007/s43236-022-00389-y
  21. Long, B., Cao, T., Fang, W., Chong, K.T., Guerrero, J.M.: Model predictive control of a three-phase two-level four-leg grid-connected converter based on sphere decoding method. IEEE Trans. Power Electron. 36(2), 2283-2297 (2021) https://doi.org/10.1109/TPEL.2020.3006432
  22. Komurcugil, H., Bayhan, S., Guler, N., Blaabjerg, F.: An effective model predictive control method with self-balanced capacitor voltages for single-phase three-level shunt active filters. IEEE Access. 9, 103811-103821 (2021) https://doi.org/10.1109/ACCESS.2021.3097812
  23. Alhosaini, W., Wu, Y., Zhao, Y.: An enhanced model predictive control using virtual space vectors for grid-connected three-level neutral-point clamped inverters. IEEE Trans. Energy Conver. 34(4), 1963-1972 (2019) https://doi.org/10.1109/TEC.2019.2923370
  24. Busquets-Monge, S., Bordonau, J., Boroyevich, D., Somavilla, S.: The nearest three virtual space vector PWM - a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter. IEEE Trans. Power Electron. Lett. 2(1), 11-15 (2004) https://doi.org/10.1109/LPEL.2004.828445
  25. Pou, J., Pindado, R., Boroyevich, D., Rodriguez, P.: Evaluation of the low-frequency neutral-point voltage oscillations in the three-level inverter. IEEE Trans. Ind. Electron. 52(6), 1582-1588 (2005) https://doi.org/10.1109/TIE.2005.858723
  26. Yang, Y., Pan, J., Wen, H., Zhang, X., Norambuena, M., Xu, L., et al.: Computationally effcient model predictive control with fixed switching frequency of five-level ANPC converters. IEEE Trans. Ind. Electron. 69(12), 11903-11914 (2022) https://doi.org/10.1109/TIE.2021.3131797
  27. Tarisciotti, L., Formentini, A., Gaeta, A., Degano, M., Zanchetta, P., Rabbeni, R., et al.: Model predictive control for shunt active filters with fixed switching frequency. IEEE Trans. Industry. Applic. 53(1), 296-304 (2017) https://doi.org/10.1109/TIA.2016.2606364
  28. Jin, N., Chen, M., Guo, L., Li, Y., Chen, Y.: Double-vector modelfree predictive control method for voltage source inverter with visualization analysis. IEEE Trans. Ind. Electron. 69(10), 10066-10078 (2022) https://doi.org/10.1109/TIE.2021.3128905
  29. Xiao, D., Alam, K.S., Norambuena, M., Rahman, M.F., Rodriguez, J.: Modified modulated model predictive control strategy for a grid-connected converter. IEEE Trans. Ind. Electron. 68(1), 575-585 (2021) https://doi.org/10.1109/TIE.2020.2965457
  30. Tarisciotti, L., Zanchetta, P., Watson, A., Clare, J.C., Degano, M., Bifaretti, S.: Modulated model predictive control for a three-phase active rectifier. IEEE Trans. Industry. Applic. 51(2), 1610-1620 (2015) https://doi.org/10.1109/TIA.2014.2339397
  31. Wang Q, Rivera M, Riveros JA, Wheeler P (2019) Modulated Model Predictive Current Control for PMSM Operating With Three-level NPC Inverter. In: 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC). pp 1-5.
  32. Xiao, D., Alam, K.S., Akter, M.P., Shakib, S.M.S.I., Zhang, D., Rahman, M.F.: Modulated model predictive control for four-leg inverters with online duty ratio optimization. IEEE Trans. Indus. Applic. 56(3), 3114-3124 (2020) https://doi.org/10.1109/TIA.2020.2971448
  33. Kang, M., Kim, J., Han, S., Cho, Y., Lee, E.: Modulated model predictive current control of HERIC AFE converter equipped with LCL filter. J. Power Electron. 22, 151-161 (2022) https://doi.org/10.1007/s43236-021-00341-6
  34. Cho, Y., Lai, J.S.: Digital plug-in repetitive controller for singlephase bridgeless PFC converters. IEEE Trans. Power Electron. 28(1), 165-175 (2013) https://doi.org/10.1109/TPEL.2012.2196288
  35. Keliang, Z., Wang, D.: Digital repetitive controlled three-phase PWM rectifier. IEEE Trans. Power Electron. 18(1), 309-316 (2003)  https://doi.org/10.1109/TPEL.2002.807150