DOI QR코드

DOI QR Code

Research on grid-connected harmonic current suppression of three-phase four-wire energy storage inverters

  • Hongyang Qing (Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, School of Electrical Engineering, Yanshan University) ;
  • Chunjiang Zhang (Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, School of Electrical Engineering, Yanshan University) ;
  • Xiuhui Chai (Intelligent Manufacturing College, Tianjin Sino-German University of Applied Sciences) ;
  • Hao He (Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, School of Electrical Engineering, Yanshan University) ;
  • Xiaohuan Wang (Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, School of Electrical Engineering, Yanshan University)
  • Received : 2022.06.09
  • Accepted : 2023.01.19
  • Published : 2023.06.20

Abstract

When a three-phase four-wire grid-connected energy storage inverter is connected to unbalanced or single-phase loads, a large grid-connected harmonic current is generated due to the existence of a zero-sequence channel. A controller design approach for grid-connected harmonic current suppression is proposed based on proportion-integral-repetitive (PI-repetitive) control for a three-level neutral point clamped (3L-NPC) three-phase four-wire inverter. By designing the variable parameters n (gain coefficient of the PI controller) and Qs (gain of the repetitive controller), the effect of the PI-repetitive controller gain on current harmonic suppression is analyzed using a three-dimensional amplitude gain curve. A simplified impedance model in the d0-frame for a three-phase four-wire inverter is proposed. Based on the impedance model in the d0-frame, the system stability is analyzed under different PI-repetitive control gains by the generalized Nyquist criterion. Finally, the optimal controller design is obtained by a gain characteristic and system stability analysis. The controller obtained by this harmonic suppression analysis method can simultaneously ensure the best grid-connected current quality of the three-phase four-wire inverter and the dynamic stability of the system. Simulation and experimental results verify the effectiveness and correctness of the proposed controller design approach for grid-connected harmonic current suppression.

Keywords

Acknowledgement

This work was supported by the Hebei Provincial Graduate Innovative Funding Project in 2021 (Grant No. CXZZBS2021139) and the National Natural Science Foundation of China (Grant Nos. 51877187 and 52077191).

References

  1. Lasseter, R.H., Chen, Z., Pattabiraman, D.: Grid-forming inverters: a critical asset for the power grid. IEEE J. Emerg. Sel. Top. Power Electron. 8(2), 925-935 (2020)  https://doi.org/10.1109/JESTPE.2019.2959271
  2. Shen, X., Shahidehpour, M., Han, Y., Zhu, S., Zheng, J.: Expansion planning of active distribution networks with centralized and distributed energy storage systems. IEEE Trans. Sustain. Energy 8(1), 126-134 (2017)  https://doi.org/10.1109/TSTE.2016.2586027
  3. Li, J., Xiong, R., Yang, Q.: Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system. Appl. Energy 201, 257-269 (2017)  https://doi.org/10.1016/j.apenergy.2016.10.066
  4. Alsaidan, I., Khodaei, A., Gao, W.: A comprehensive battery energy storage optimal sizing model for microgrid applications. IEEE Trans. Power Syst. 33(4), 3968-3980 (2018)  https://doi.org/10.1109/TPWRS.2017.2769639
  5. Luo, F., Loo, K., Lai, Y.: Simple carrier-based pulse-width modulation scheme for three-phase four-wire neutral-point-clamped inverters with neutral-point balancing. IET Power Electron. 9(2), 365-376 (2016)  https://doi.org/10.1049/iet-pel.2014.0906
  6. Xiong, H., Wu, C.: Control strategy of three-phase four-wire three-leg inverters. In: 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 75-78 (2019) 
  7. Ma, F., Luo, A., Xiong, Q., He, Z., Xu, Q.: Derivation of zero-sequence circulating current and the compensation of delta-connected static var generators for unbalanced load. IET Power Electron. 9(3), 576-588 (2016)  https://doi.org/10.1049/iet-pel.2014.0682
  8. Wu, X., Tan, G., Ye, Z., Yao, G., Liu, Z., Liu, G.: Virtual-space-vector PWM for a three-level neutral-point-clamped inverter with unbalanced DC-links. IEEE Trans. Power Electron. 33(3), 2630-2642 (2018)  https://doi.org/10.1109/TPEL.2017.2692272
  9. Gao, Z., Zhao, H., Zhou, X., Ma, Y.: Summary of power system harmonics. In: 2017 29th Chinese Control and Decision Conference (CCDC), pp. 2287-2291 (2017) 
  10. Yang, S., Lei, Q., Peng, F.Z., Qian, Z.: A robust control scheme for grid-connected voltage-source inverters. IEEE Trans. Ind. Electron. 58(1), 202-212 (2011)  https://doi.org/10.1109/TIE.2010.2045998
  11. Shen, G., Zhu, X., Zhang, J., Xu, D.: A new feedback method for pr current control of LCL-filter-based grid-connected inverter. IEEE Trans. Ind. Electron. 57(6), 2033-2041 (2010)  https://doi.org/10.1109/TIE.2010.2040552
  12. Marati, N., Prasad, D.: A modified feedback scheme suitable for repetitive control of inverter with nonlinear load. IEEE Trans. Power Electron. 33(3), 2588-2600 (2018)  https://doi.org/10.1109/TPEL.2017.2690361
  13. Zhang, Z., Qiu, H., Wang, J.: Research on eliminating parasitic oscillation of inverter by using PI and repetitive control. In: 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT), pp. 321-324 (2016) 
  14. Zhang, K., Kang, Y., Xiong, J., Chen, J.: Direct repetitive control of SPWM inverter for UPS purpose. IEEE Trans. Power Electron. 18(3), 784-792 (2003)  https://doi.org/10.1109/TPEL.2003.810846
  15. Sha, D., Wu, D., Liao, X.: Implementation of three-phase grid connected inverters with SVPWM-based repetitive control. In: Proceedings of the 29th Chinese Control Conference, pp. 4903-4906 (2010) 
  16. Pandove, G., Singh, M.: Robust repetitive control design for a three-phase four wire shunt active power filter. IEEE Trans. Ind. Inform. 15(5), 2810-2818 (2019)  https://doi.org/10.1109/TII.2018.2875035
  17. Lidozzi, A., Ji, C., Solero, L., Zanchetta, P., Crescimbini, F.: Resonant-repetitive combined control for stand-alone power supply units. IEEE Trans. Ind. Appl. 51(6), 4653-4663 (2015)  https://doi.org/10.1109/TIA.2015.2458960
  18. Qing, H., He, H., Nie, W., Wang, X., Zhang, C.: Research on harmonic current suppression of three-phase four-wire power conversion system. In: E3S Web of Conferences, 260(02003) (2021) 
  19. Zhang, M., Huang, L., Yao, W., Lu, Z.: Circulating harmonic current elimination of a CPS-PWM-based modular multilevel converter with a plug-in repetitive controller. IEEE Trans. Power Electron. 29(4), 2083-2097 (2014)  https://doi.org/10.1109/TPEL.2013.2269140
  20. Wang, X., Harnefors, L., Blaabjerg, F.: Unified impedance model of grid-connected voltage-source converters. IEEE Trans. Power Electron. 33(2), 1775-1787 (2018)  https://doi.org/10.1109/TPEL.2017.2684906
  21. Wen, B., Boroyevich, D., Burgos, R., Mattavelli, P., Shen, Z.: Analysis of D-Q small-signal impedance of grid-tied inverters. IEEE Trans. Power Electron. 31(1), 675-687 (2016)  https://doi.org/10.1109/TPEL.2015.2398192
  22. Chen, X., Zhang, Y., Wang, S., Chen, J., Gong, C.: Impedance-phased dynamic control method for grid-connected inverters in a weak grid. IEEE Trans. Power Electron. 32(1), 274-283 (2017)  https://doi.org/10.1109/TPEL.2016.2533563
  23. Wang, S., Liu, Z., Liu, J., Boroyevich, D., Burgos, R.: Small-signal modeling and stability prediction of parallel droop-controlled inverters based on terminal characteristics of individual inverters. IEEE Trans. Power Electron. 35(1), 1045-1063 (2020)  https://doi.org/10.1109/TPEL.2019.2914176
  24. Zhang, C., Molinas, M., Rygg, A., Cai, X.: Impedance-based analysis of interconnected power electronics systems: impedance network modeling and comparative studies of stability criteria. IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2520-2533 (2020)  https://doi.org/10.1109/JESTPE.2019.2914560
  25. Dong, D., Xu, D.: Small signal model and modified control strategy for three-phase four-wire three-level rectifier. High Volt. Eng. 47(4), 1363-1373 (2021) 
  26. Rodriguez, J., Bernet, S., Steimer, P.K., Lizama, I.E.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Electron. 57(7), 2219-2230 (2010)  https://doi.org/10.1109/TIE.2009.2032430
  27. Steinbuch, M., Weiland, S., Singh, T.: Design of noise and period-time robust high-order repetitive control, with application to optical storage. Automatica 43(12), 2086-2095 (2007)  https://doi.org/10.1016/j.automatica.2007.04.011
  28. Ye, J., Liu, L., Xu, J., Shen, A.: Frequency adaptive proportional-repetitive control for grid-connected inverters. IEEE Trans. Ind. Electron. 68(9), 7965-7974 (2021)  https://doi.org/10.1109/TIE.2020.3016247
  29. Hou, H., Zhang, S., Yang, J., Hu, W.: Harmonic suppression of LCL grid-connected inverter based on PI control. In: 2021 Int. Conf. on Artif. Intell. and Electromechanical Automat. (AIEA), pp. 15-18 (2021) 
  30. Ye, Y., Wu, Y., Xu, G., Zhang, B.: Cyclic repetitive control of CVCF PWM DC-AC converters. IEEE Trans. Ind. Electron. 64(12), 9399-9409 (2017)  https://doi.org/10.1109/TIE.2017.2711542
  31. Trinh, Q.-N., Lee, H.-H.: Versatile UPQC control system with a modified repetitive controller under nonlinear and unbalanced loads. J. Power Electron. 15(4), 1093-1104 (2015)  https://doi.org/10.6113/JPE.2015.15.4.1093
  32. Abusara, M. A., Jamil, M., Sharkh, S. M.: Repetitive current control of an interleaved grid-connected inverter. In: 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 558-563 (2012) 
  33. Zhou, X., et al.: The control strategy of harmonic suppression of photovoltaic grid-connected inverter based on PI+MPR. In: 2019 4th IEEE Workshop on the Electronic Grid (eGRID), pp. 1-5 (2019) 
  34. Yang, M., Yang, J., Zhao, T., Zheng, C., Wei, Y.: Harmonic resonance control strategy of grid-connected inverter to suppress resonance frequency shift in weak grid. Electr. Mach. Contrl. 25(08), 87-98 (2021) 
  35. Parvez, M., Elias, M.F.M., Rahim, N.A., Blaabjerg, F., Abbott, D., Al-Sarawi, S.F.: Comparative study of discrete PI and PR controls for single-phase UPS inverter. IEEE Access 8, 45584-45595 (2020)  https://doi.org/10.1109/ACCESS.2020.2964603
  36. Bakhshizadeh, M.K.: Couplings in phase domain impedance modeling of grid-connected converters. IEEE Trans. Power Electron. 31(10), 6792-6796 (2016)