DOI QR코드

DOI QR Code

Compensation method of PWM inverter output voltage under low sampling-to-fundamental frequency ratio operating conditions

  • Su‑In Jo (Department of Electrical Engineering, Chungnam National University) ;
  • Wook‑Jin Lee (Department of Electrical Engineering, Chungnam National University)
  • Received : 2022.10.03
  • Accepted : 2023.04.04
  • Published : 2023.06.20

Abstract

This paper proposed a compensation method for the output voltage errors of a PWM inverter. Output voltage errors occur under low sampling-to-fundamental frequency ratio operating conditions, and they can be compensated by calculating a switching timing in which the average of the output voltage during one sampling period is equal to the voltage reference. The proposed compensation method for output voltage errors was described according to the PWM method and the voltage update method, and it was verifed by simulation and experimental results. It was confrmed that a lower sampling-to-fundamental frequency ratio results in a larger output voltage error. In addition, it was also confrmed that the proposed compensation method can completely remove these errors.

Keywords

References

  1. Hong, D., Woo, B., Lee, J., Koo, D.: ultra high speed motor supported by air foil bearings for air blower cooling fuel cells. IEEE Trans. Magn. 48(2), 871-874 (2012) https://doi.org/10.1109/TMAG.2011.2174209
  2. Lusignani, D., Barater, D., Franceschini, G., Buticchi, G., Galea, M., Gerada, C.: A high-speed electric drive for the more electric engine. IEEE Energy Conv. Cong. Exposit. (ECCE) 2015, 4004-4011 (2015)
  3. Zhao, L., et al.: A highly efcient 200 000 RPM permanent magnet motor system. IEEE Trans. Magn. 43(6), 2528-2530 (2007). https://doi.org/10.1109/TMAG.2007.893523
  4. Monopoli, V.G., Sidella, P., F.: Cupertino, "A Si-IGBT-based solution to drive high-speed electrical machines." In IEEE Transact. Ind. Appl. 55(5), 4900-4909 (2019). https://doi.org/10.1109/TIA.2019.2919821
  5. Zwyssig, S., Round, D., Kolar, J.W.: An ultra high-speed, low power electrical drive system. In IEEE Transact. Ind. Electron. 55(2), 577-585 (2008) https://doi.org/10.1109/TIE.2007.911950
  6. Bon-HoSeung-Ki, B.S.: A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives. In IEEE Transact Ind Appl 39(3), 802-810 (2008)
  7. Yim, J., Sul, S., Bae, B., Patel, N.R., Hiti, S.: Modifed current control schemes for high-performance permanent-magnet AC drives with low sampling to operating frequency ratio. In IEEE Transact Ind Appl 45(2), 763-771 (2009). https://doi.org/10.1109/TIA.2009.2013600
  8. Kim, H., Degner, M.W., Guerrero, J.M., Briz, F., Lorenz, R.D.: Discrete-time current regulator design for AC machine drives. IEEE Transact. Ind. Appl. 46(4), 1425-1435 (2010). https://doi.org/10.1109/TIA.2010.2049628
  9. McGrath, B.P., Parker, S.G., Holmes, D.G.: High-performance current regulation for low-pulse-ratio inverters. In IEEE Transact. Ind. Appl. 49(1), 149-158 (2013) https://doi.org/10.1109/TIA.2012.2229252
  10. Xu, Y., Morito, C., Lorenz, R.D.: Design of current regulator for induction machines at low sampling-to-fundamental frequency ratios with improved current observer. IEEE Energy Convers. Congress and Exposition (ECCE) 2019, 2374-2379 (2019)
  11. Yoo, J., Kim, H.-S., Sul, S.-K.: Design of frequency-adaptive fux observer in PMSM drives robust to discretization error. IEEE Trans. Industr. Electron. 69(4), 3334-3344 (2022) https://doi.org/10.1109/TIE.2021.3075854
  12. Dai, S., Wang, J., Sun, Z., Chong, E.: Deadbeat predictive current control for high-speed permanent magnet synchronous machine drives with low switching-to-fundamental frequency ratios. IEEE Trans. Industr. Electron. 69(5), 4510-4521 (2022) https://doi.org/10.1109/TIE.2021.3078383
  13. Yang Xu, Yingfeng Ji, Jonathan Hair, Nurani S. Chandrasekhar, "Accurate Digital Delay Compensation of Synchronous Frame Current Regulator with Variable Switching Frequencies", 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), pp.665-669, 2022
  14. Yuan, X., Chen, J., Jiang, C., Lee, C.H.T.: Discrete-time current regulator for AC machine drives. IEEE Trans. Power Electron. 37(5), 5847-5858 (2022) https://doi.org/10.1109/TPEL.2021.3130229
  15. Morimoto, S., Kawamoto, K., Sanada, M., Takeda, Y.: Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame. IEEE Transact. Ind. Appl. 38(4), 1054-1061 (2002) https://doi.org/10.1109/TIA.2002.800777
  16. Bae, B.-H., Sul, S.-K., Kwon, J.-H., Byeon, J.-S.: Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor. In IEEE Transact. Ind. Appl. 39(3), 811-818 (2003) https://doi.org/10.1109/TIA.2003.810658
  17. Seok, J.-K., Lee, J.-K., Lee, D.-C.: Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotorposition-tracking PI controller. IEEE Trans. Industr. Electron. 53(2), 399-405 (2006). https://doi.org/10.1109/TIE.2006.870728
  18. Kim, J., Jeong, I., Nam, K., Yang, J., Hwang, T.: Sensorless control of pmsm in a high-speed region considering iron loss. IEEE Trans. Industr. Electron. 62(10), 6151-6159 (2015) https://doi.org/10.1109/TIE.2015.2432104
  19. Awan, H.A.A., Tuovinen, T., Saarakkala, S.E., Hinkkanen, M.: Discrete-time observer design for sensorless synchronous motor drives. IEEE Transact. Ind. Appl. 52(5), 3968-3979 (2016). https://doi.org/10.1109/TIA.2016.2572105
  20. Keyuan Huang, Jiaxin Zhou, He Zhao, Wei Lv, Shoudao Huang, "Novel Compensation Method of Digital Delay for High-speed Permanent Magnet Synchronous Motor Under Low Carrier Ratio", 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pp.3854-3861, 2020.
  21. Yao, Y., Huang, Y., Peng, F., Dong, J., Zhu, Z.: Compensation method of position estimation error for high-speed surface-mounted PMSM drives based on robust inductance estimation. IEEE Trans. Power Electron. 37(2), 2033-2044 (2022). https://doi.org/10.1109/TPEL.2021.3106510
  22. Zhang, G., Wang, G., Xu, D., Yu, Y.: "Discrete-time low-frequency-ratio synchronous-frame full-order observer for position sensorless IPMSM drives", IEEE Trans. Emerg. Sel. Topics Power Electron. 5(2), 870-879 (2017) https://doi.org/10.1109/JESTPE.2017.2659719
  23. Gou, L., Wang, C., You, X., Zhou, M., Dong, S.: IPMSM sensorless control for zero- and low-speed regions under low switching frequency condition based on fundamental model. IEEE Transact. Transport. Electrifcat. 8(1), 1182-1193 (2022) https://doi.org/10.1109/TTE.2021.3093069
  24. Lee, Y., Ha, J.: Nonlinearity analysis and linear modulation method for two level voltage source inverter with low switching to operating frequency ratio. IEEE Appl. Power Electron. Conf. Exposit. (APEC) 2016, 193-198 (2016)