DOI QR코드

DOI QR Code

Model predictive current control with modified discrete space vector modulation for three-leg two-phase VSI

  • Gi‑Heon Jeong (Body Mechanism Engineering Design Team, Hyundai Motor Company ) ;
  • Hyung‑Woo Lee (Department of Electrical and Computer Engineering, Ajou University) ;
  • Tae‑Yong Yoon (Department of Electrical and Computer Engineering, Ajou University) ;
  • Hyeon‑Jun Park (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kyo‑Beum Lee (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2022.11.12
  • Accepted : 2023.04.05
  • Published : 2023.06.20

Abstract

This paper proposes a model predictive current control (MPCC) method for a three-leg two-phase voltage source inverter to reduce the ripple of the output current. The proposed MPCC method is based on discrete space vector modulation, which is implemented by eliminating nonlinear modulation regions and generating virtual voltage vectors based on the stationary reference voltage vector axis. In addition, based on a voltage angle estimated using load parameters, the candidate voltage vectors in a specific region are generated, which reduces the calculation burden. Subsequently, the cost function is calculated using these candidate voltage vectors, and the optimal voltage vector selected using the proposed MPCC method is more accurate than the vector selected using the conventional MPCC method. Therefore, by applying the proposed method to increase the number of virtual voltage vectors, it is possible to obtain a delicate reference voltage. Consequently, the total harmonic distortion of the output current is reduced, resulting in an increase in power quality. The effectiveness and feasibility of the proposed method are verified through simulations and experiments.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20206910100160, No. 20225500000110)

References

  1. Lee, K.-B.: Advanced power electronics. Munundang (2019) 
  2. Kim, D.-K.: Phase current sensing technique for two-phase three-leg inverters using three shunt resistors. J. Power Electron. 22(2), 277-286 (2022)  https://doi.org/10.1007/s43236-021-00363-0
  3. Kim, D.-K., Jang, D.-H., Yoon, D.-Y.: Comparative analysis of CBPWM methods for two-phase three-leg inverters using zero sequence concept. J. Power Electron. 20(4), 948-957 (2020)  https://doi.org/10.1007/s43236-020-00087-7
  4. Lin, H., Zhao, F., Kwon, B.-I.: Space-vector PWM technique for a two-phase permanent magnet synchronous motor considering a reduction in switching losses. J. Electr. Eng. Technol. 10(3), 905-915 (2015)  https://doi.org/10.5370/JEET.2015.10.3.905
  5. Joo, K.-J., Lee, G.-S., Hong, H.-S., Won, S.-H., Lee, J.: 3-leg inverter control for 2-phase outer rotor coreless torque actuator in hybrid multi-D.O.F system. Energies 11(6), 1611 (2018) 
  6. Lee, K.-B., Lee, J.-S.: Reliability improvement technology for power converters. Springer, Singapore (2017) 
  7. Charumit, C., Kinnares, V.: Discontinuous SVPWM techniques of three-leg VSI-fed balanced two-phase loads for reduced switching losses and current ripple. IEEE Trans. Power Electron. 30(4), 2191-2204 (2015)  https://doi.org/10.1109/TPEL.2014.2326773
  8. Choi, J., Lee, D.-H., Mok, H.: Discontinuous PWM techniques of three-leg two-phase voltage source inverter for solar system. IEEE Access 8, 199864-199881 (2020)  https://doi.org/10.1109/ACCESS.2020.3032419
  9. Razia Sultana, W., Sachoo, S.K.: Finite control set model predictive current control for a cascaded multilevel inverter. J. Electr. Eng. Technol. 11(6), 1674-1683 (2019)  https://doi.org/10.5370/JEET.2016.11.6.1674
  10. Zhong, L., Hu, S.: Model predictive control based discontinuous PWM algorithm for 3L-NPC inverter. J. Electr. Eng. Technol. 17(1), 425-436 (2022)  https://doi.org/10.1007/s42835-021-00893-4
  11. Zhang, X., Tao, R., Xu, X., Wang, T., Zhang, H.: Predictive current control of a PMSM three-level dual-vector model based on self-anti-disturbance techniques. J. Electr. Eng. Technol. 17(6), 3375-3388 (2022) 
  12. Li, Z., An, J., Zhang, Q.-S., Sun, H.-X.: Design of current predictive control of permanent magnet synchronous linear motor based on double disturbance compensator. J. Electr. Eng. Technol. 17(2), 1257-1269 (2022)  https://doi.org/10.1007/s42835-021-00990-4
  13. Yanping, X., Yifei, S., Yongle, H.: Multi-step model predictive current control of permanent-magnet synchronous motor. J. Power Electron. 20(1), 176-187 (2020)  https://doi.org/10.1007/s43236-019-00024-3
  14. Won, I.-K., Hwang, J.-H., Kim, D.-Y., Choo, K.-M., Lee, S.-R., Won, C.-Y.: Improved FOC of IPMSM using finite-state model predictive current control for EV. J. Electr. Eng. Technol. 12(5), 1851-1863 (2017) 
  15. Qi, C., Lang, Z., Li, T., Chen, X.: Finite-control-set model predictive control for magnetically coupled wireless power transfer systems. J. Power Electron. 21(7), 1095-1105 (2021)  https://doi.org/10.1007/s43236-021-00252-6
  16. Bakeer, A., Ismeil, M., Orabi, M.: Modified finite control set-model predictive controller (MFCS-MPC) for quasi z-source inverters based on a current observer. J. Power Electron. 17(3), 610-6205 (2017)  https://doi.org/10.6113/JPE.2017.17.3.610
  17. Lyu, J., Ma, B., Yan, H., Ji, Z., Ding, J.: A modified finite control set model predictive control for 3L-NPC grid-connected inverters using virtual voltage vectors. J. Electr. Eng. Technol. 15(1), 121-133 (2020)  https://doi.org/10.1007/s42835-019-00305-8
  18. Lee, J.-H., Lee, J.-S., Moon, H.-C., Lee, K.-B.: An improved finite-set model predictive control based on discrete space vector modulation methods for grid-connected three-level voltage source inverter. IEEE J. Emerg. Sel. Topics Power Electron. 6(4), 1744-1760 (2018)  https://doi.org/10.1109/JESTPE.2018.2830783
  19. Al-khamis, O., Gumus, B.: Comparison and performance analysis of model predictive control developed by transfer function based model and state space based model for brushless doubly fed induction generator. J. Electr. Eng. Technol. 18(1), 111-121 (2023)  https://doi.org/10.1007/s42835-022-01179-z
  20. Kim, K.Y., Bak, Y., Lee, K.-B.: Predictive current control for indirect matrix converter with reduced current ripple. J. Power Electron. 20(2), 443-454 (2020)  https://doi.org/10.1007/s43236-020-00048-0
  21. Lee, Y.J., Bak, Y., Lee, K.-B.: Performance improvement of hydraulic turbine generation system using subdivided finite set model predictive current control. J. Power Electron. 22(8), 1386-1397 (2022)  https://doi.org/10.1007/s43236-022-00462-6
  22. Zhao, B., Li, H., Mao, J.: Double-objective finite control set model-free predictive control with DSVM for PMSM drives. J. Power Electron. 19(1), 168-178 (2019) 
  23. Wang, H., Wu, X., Zheng, X., Yuan, X.: Virtual voltage vector based model predictive control for a nine-phase open-end winding PMSM with a common dc bus. IEEE Trans. Ind. Electron. 69(6), 5386-5397 (2022)  https://doi.org/10.1109/TIE.2021.3088372
  24. Hucheng, H., Botao, L., Qin, W., Fuchen, T., Haoya, G., Chenyang, Z.: Active disturbance rejection control-based robust model predictive current control for induction motor. J. Electr. Eng. Technol. 17(6), 3413-3425 (2022) 
  25. Lee, J.-S., Lee, K.-B., Blaabjerg, F.: Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems. IEEE Power Electron. 34(12), 12368-12383 (2019)  https://doi.org/10.1109/TPEL.2019.2905843
  26. Alsofyani, I.M., Lee, K.-B.: Three-level inverter-fed model predictive torque control of a permanent magnet synchronous motor with discrete space vector modulation and simplified neutral point voltage balancing. J. Power Electron. 22(1), 22-30 (2022)  https://doi.org/10.1007/s43236-021-00330-9
  27. Gutierrez, B., Kwak, S.-S.: Modular multilevel converters (MMCs) controlled by model predictive control with reduced calculation burden. IEEE Trans. Power Electron. 33(11), 9176-9187 (2018)  https://doi.org/10.1109/TPEL.2018.2789455
  28. Song, W., Le, S., Wu, X., Ruan, Y.: An improved model predictive direct torque control for induction machine drives. J. Power Electron. 17(3), 674-685 (2017)  https://doi.org/10.6113/JPE.2017.17.3.674
  29. Choi, H.-W., Kim, S.-M., Kim, J., Cho, Y., Lee, K.-B.: Deadbeat predictive direct power control of interleaved buck converter-based fast battery chargers for electric vehicles. J. Power Electron. 20(5), 1162-1171 (2020)  https://doi.org/10.1007/s43236-020-00106-7
  30. Qi, C., Tu, P., Wang, P., Zagrodnik, M.: Predictive current control for multilevel cascaded H-Bridge inverters based on a deadbeat solution. J. Power Electron. 17(1), 1595-2092 (2017)  https://doi.org/10.6113/JPE.2017.17.1.76
  31. Ma, W., Sun, P., Zhou, G., Sailijiang, G., Zhang, Z., Liu, Y.: A low-computation indirect model predictive control for modular multilevel converters. J. Power Electron. 19(2), 529-539 (2019)