DOI QR코드

DOI QR Code

Emergence of Conjugative Multidrug-Resistant Pseudomonas aeruginosa

접합가능한다제내성녹농균의출현

  • Miyoung Lee (Department of Biomedical Laboratory Science, Daejeon Institute of Science and Technology)
  • 이미영 (대전과학기술대학교 임상병리과)
  • Received : 2023.08.16
  • Accepted : 2023.10.05
  • Published : 2023.12.28

Abstract

The emergence and spread of multidrug-resistant Pseudomonas aeruginosa (MRPA) have become a serious problem worldwide. The involvement of metallo-β-lactamases (MBLs) in inducing carbapenem resistance is particularly acute. However, unlike other members of the Enterobacteriaceae genus, new clones of P. aeruginosa are constantly emerging and rapidly replacing previously prevalent dominant clones. Therefore, this study aimed to perform antimicrobial resistance gene analysis, integron gene cassette analysis using DNA sequencing, and plasmid transfer analysis by conjugation to investigate the antimicrobial resistance dynamics of 18 P. aeruginosa strains isolated from various medical samples at a general hospital in Busan from September 2017 to September 2019. All 18 strains showed extensively drug-resistant (XDR) phenotype and were resistant to most antibiotics, except colistin (100%) but were susceptible to aztreonam (22.2%) and ceftazidime (16.6%). Approximately 66.7% of the strains had Class 1 integrons showing various antimicrobial resistances. Notably, IMP-6 ST235 (66.7%), VIM-2 ST357 (16.7%), and IMP-1 ST446(16.7%) were identified. The identification of IMP-1-producing ST446, previously unreported in Korea, is noteworthy considering the emergence and prevalence of another MRPA high-risk clone.

다제내성 P. aeruginosa (MRPA)의 출현과 확산은 전 세계적으로 심각한 문제가 되었다. 특히 metallo-β-lactamases (MBLs)의 carbapenem 고도내성 관여 정도는 심각한 수준이며, 특히 P. aeruginosa는 장내세균 속 균종과는 달리 새로운 클론들이 지속적으로 나타나고 기존에 확산되었던 우세 클론을 대체하는 과정이 매우 빠르게 진행되고 있다. 이에 본 연구에서는 2017년 9월부터 2019년 9월까지 부산의 한 종합병원에서 다양한 의료용 시료로부터 분리된 18균주의 P. aeruginosa 균주에 대한 항균제 내성 유전자 분석과 DNA 염기서열 분석을 통한 Integron의 유전자 카세트 분석 및 접합에 의한 Plasmid 전달 분석을 수행하며 이에 대한 역학관계를 조사하고자 하였다. 18균주 모두 XDR 표현형을 보이는 균주였으며, Colistin(100%)을 제외한 대부분의 항생제에 내성을 나타냈으나, aztreonam(22.2%), ceftazidime(16.6%)에 일부 감수성을 보였다. 균주의 66.7%는 다양한 항균제 내성을 나타내는 Class1 integron을 가지고 있었으며, 접합에 의한 Plasmid전달도 성공적으로 이루어졌다(83.3%). 이는 이전의 장내세균에 대한 연구결과보다 25.8% 상향한 결과를 보여 공중보건에 대한 심각한 역학관점의 고찰을 필요로 한다. 특히, IMP-6 ST235 (66.7%)가 주를 이루며, VIM-2 ST357 (16.7), IMP-1 ST446 (16.7)이 확인되었다. 흥미롭게도, 국내에서는 아직까지 보고된 바가 없는 IMP-1 생성 ST446의 확인은 또 다른 MRPA 고위험 클론의 생성과 유행이라는 관점에서 주목할 만하다.

Keywords

Acknowledgement

This research was supported by the Daejeon Institute of Science and Technology.

References

  1. Kumari H, Balasubramanian D, Zincke D, Mathee K. 2014. Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. J. Med. Microbiol. 63: 544-555. https://doi.org/10.1099/jmm.0.070185-0
  2. Fazeli N, Momtaz H. 2014. Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran Red. Crescent Med. J. 16: e15722.
  3. Strateva T, Yordanov D. 2009. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J. Med. Microbiol. 58: 1133-1148. https://doi.org/10.1099/jmm.0.009142-0
  4. Yoo JS, Yang JW, Kim HM, Byeon J, Kim HS, Yoo JI, et al. 2012. Dissemination of genetically related IMP-6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. Int. J. Antimicrob. Agents. 39: 300-304. https://doi.org/10.1016/j.ijantimicag.2011.11.018
  5. Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. 2015. Dominance of international 'high-risk clones' among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK. J. Antimicrob. Chemother. 70: 103-110. https://doi.org/10.1093/jac/dku339
  6. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18: 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  7. Kim D, Jeong SH. 2022. Current status of multidrug-resistant bacteria. J. Korean Med. Assoc. 65: 468-477. https://doi.org/10.5124/jkma.2022.65.8.468
  8. Yoon EJ, Jeong SH. 2021. Mobile carbapenemase genes in Pseudomonas aeruginosa. Front. Microbiol. 12: 614058.
  9. Choi JY, Kwak YG, Yoo H, Lee SO, Kim HB, Han SH, et al. 2016. Trends in the distribution and antimicrobial susceptibility of causative pathogens of device-associated infection in Korean intensive care units from 2006 to 2013: results from the Korean Nosocomial Infections Surveillance System (KONIS). J. Hosp. Infect. 92: 363-371. https://doi.org/10.1016/j.jhin.2015.12.012
  10. Rasmussen B, Gluzman Y, Tally F. 1990. Cloning and sequencing of the class B β-lactamase gene (ccrA) from bacteroides fragilis TAL3636. Antimicrob. Agents Chemother. 34: 1590-1592. https://doi.org/10.1128/AAC.34.8.1590
  11. Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. 2004. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-β-lactamase, in a tertiary care center in Cali, Colombia. J. Clin. Microbiol. 42: 5094-5101. https://doi.org/10.1128/JCM.42.11.5094-5101.2004
  12. Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, et al. 2002. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J. Antimicrob. Chemother. 50: 673-679. https://doi.org/10.1093/jac/dkf210
  13. Cicek AC, Duzgun AO, Saral A, Sandalli C. 2014. Determination of a novel integron-located variant (blaOXA -320 ) of Class D β-lactamase in Proteus mirabilis. J. Basic Microbiol. 54: 1030-1035. https://doi.org/10.1002/jobm.201300264
  14. Weinstein MP. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.
  15. Tsai YM, Wang S, Chiu HC, Kao CY, Wen LL. 2020. Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae. BMC Microbiol. 20: 315.
  16. Jeong S, Kim JO, Jeong SH, Bae IK, Song W. 2015. Evaluation of peptide nucleic acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates. J. Microbiol. Methods 113: 4-9. https://doi.org/10.1016/j.mimet.2015.03.019
  17. Lee M, Choi TJ. 2021. Antimicrobial resistance caused by KPC-2 encoded by promiscuous plasmids of the Klebsiella pneumoniae ST307 strain. Ann. Lab Med. 41: 86-94. https://doi.org/10.3343/alm.2021.41.1.86
  18. Perez-Perez FJ, Hanson ND. 2002. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153-2162. https://doi.org/10.1128/JCM.40.6.2153-2162.2002
  19. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 56: 698-702. https://doi.org/10.1093/jac/dki324
  20. Yamane K, Wachino J, Suzuki S, Arakawa Y. 2008. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob. Agents Chemother. 52: 1564-1566. https://doi.org/10.1128/AAC.01137-07
  21. Edalucci E, Spinelli R, Dolzani L, Riccio ML, Dubois V, Tonin EA, et al. 2008. Acquisition of different carbapenem resistance mechanisms by an epidemic clonal lineage of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 14: 88-90. https://doi.org/10.1111/j.1469-0691.2007.01874.x
  22. Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. 2004. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J. Clin. Microbiol. 42: 5644-5649. https://doi.org/10.1128/JCM.42.12.5644-5649.2004
  23. Dillon B, Thomas L, Mohmand G, Zelynski A, Iredell J. 2005. Multiplex PCR for screening of integrons in bacterial lysates. J. Microbiol. Methods 62: 221-232. https://doi.org/10.1016/j.mimet.2005.02.007
  24. Zhang XX, Zhang T, Zhang M, Fang HH, Cheng SP. 2009. Characterization and quantification of class 1 integrons and associated gene cassettes in sewage treatment plants. Appl. Microbiol. Biotechnol. 82: 1169-1177. https://doi.org/10.1007/s00253-009-1886-y
  25. Levesque C, Piche L, Larose C, Roy PH. 1995. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 39: 185-191. https://doi.org/10.1128/AAC.39.1.185
  26. Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, et al. 2015. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Dia. Microbiol. Infect. Dis. 82: 70-72. https://doi.org/10.1016/j.diagmicrobio.2015.02.001
  27. Lee M, Choi TJ. 2020. Species Transferability of Klebsiella pneumoniae Carbapenemase-2 isolated from a high-risk clone of Escherichia coli ST410. J. Microbiol. Biotechnol. 30: 974-981. https://doi.org/10.4014/jmb.1912.12049
  28. O'Neill J. 2014. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review of antimicrobial resistance. Available from https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf. Accessed Nov. 20, 2019.
  29. World Health Organization. GLASS report: early implementation 2017-2018 [Internet]. Geneva: World Health Organization; 2019 [cited 2022 Jul 15]. Available from: https://www.who.int/publi-cations/i/item/9789241515061.
  30. Bonomo RA, Szabo D. 2006. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis. 43: S49-S56. https://doi.org/10.1086/504477
  31. Kim J, Lee KH, Yoo S, Pai H. 2009. Clinical characteristics and risk factors of colistin-induced nephrotoxicity. Int. J. Antimicrob. Agents 34: 434-438. https://doi.org/10.1016/j.ijantimicag.2009.06.028
  32. Zavascki AP, Goldani LZ, Li J, Nation RL. 2007. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother. 60: 1206-1215. https://doi.org/10.1093/jac/dkm357
  33. Lister PD, Gardner VM, Sanders CC. 1999. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob. Agents Chemother. 43: 882-889. https://doi.org/10.1128/AAC.43.4.882
  34. Kang HY, Jeong YS, Oh JY, Tae SH, Choi CH, Moon DC, et al. 2005. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J. Antimicrob. Chemother. 55: 639-644. https://doi.org/10.1093/jac/dki076
  35. Wei Q, Hu Q, Li S, Lu H, Chen G, Shen B, et al. 2014. A novel functional class 2 integron in clinical Proteus mirabilis isolates. J. Antimicrob. Chemother. 69: 973-976. https://doi.org/10.1093/jac/dkt456
  36. Schulz J, Kemper N, Hartung J, Janusch F, Mohring SAI, Hamscher G. 2019. Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Sci. Rep. 9: 5117.
  37. Hopkins KL, Davies RH, Threlfall EJ. 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int. J. Antimicrob. Agents 25: 358-373. https://doi.org/10.1016/j.ijantimicag.2005.02.006
  38. Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T, Mouton RP. 1991. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob. Chemother. 27: 199-208. https://doi.org/10.1093/jac/27.2.199
  39. Dalhoff A. 2012. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip. Perspect. Infect. Dis. 2012: 976273.
  40. Sarkoezy G. 2001. Quinolones: a class of antimicrobial agents. Vet. Med. 46: 257-274. https://doi.org/10.17221/7883-VETMED
  41. Grobbel M, Lubke-Becker A, Wieler LH, Froyman R, Friederichs S, Filios S. 2007. Comparative quantification of the in vitro activity of veterinary fluoroquinolones. Vet. Microbiol. 124: 73-81. https://doi.org/10.1016/j.vetmic.2007.03.017
  42. Frye JG, Jackson CR. 2013. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 4: 135.
  43. Garcia Ovando H, Gorla N, Luders C, Poloni G, Errecalde C, Prieto G, et al. 1999. Comparative pharmacokinetics of enrofloxacin and ciprofloxacin in chickens. J. Vet. Pharmacol. Ther. 22: 209-212. https://doi.org/10.1046/j.1365-2885.1999.00211.x
  44. Van den Bogaard AE, London N, Driessen C, Stobberingh EE. 2001. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother. 47: 763-771. https://doi.org/10.1093/jac/47.6.763
  45. Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. 2014. Determination of extended spectrum β-lactamases, metallo-β-lactamases and AmpC-β-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns 40: 1556-1561. https://doi.org/10.1016/j.burns.2014.02.010
  46. Walsh TR, Toleman MA, Poirel L, Nordmann P. 2005. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18: 306-325. https://doi.org/10.1128/CMR.18.2.306-325.2005
  47. Queenan AM, Bush K. 2007. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20: 440-458. https://doi.org/10.1128/CMR.00001-07
  48. Tenover FC, Nicolau DP, Gill CM. 2022. Carbapenemase-producing. Emerg. Microbes Infect. 11: 811-814. https://doi.org/10.1080/22221751.2022.2048972
  49. Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. 2011. Dissemination of IMP-6 metallo-β-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea. J. Antimicrob. Chemother. 66: 2791-2796. https://doi.org/10.1093/jac/dkr381
  50. Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, et al. 2002. bla(VIM-2) cassette-containing novel integrons in metallo-β-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob. Agents Chemother. 46: 1053-1058. https://doi.org/10.1128/AAC.46.4.1053-1058.2002
  51. Chong Y, Lee K, Park YJ, Jeon DS, Lee MH, Kim MY, et al. 1997. Korean nationwide surveillance of antimicrobial resistance of bacteria in 1997. Yonsei Med. J. 39: 569-577. https://doi.org/10.3349/ymj.1998.39.6.569
  52. Lee K, Lee MA, Lee CH, Lee J, Roh KH, Kim S, et al. 2010. Increase of ceftazidime-and fluoroquinolone-resistant Klebsiella pneumoniae and imipenem-resistant Acinetobacter spp. in Korea: analysis of KONSAR study data from 2005 and 2007. Yonsei Med. J. 51: 901-911. https://doi.org/10.3349/ymj.2010.51.6.901
  53. Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. 2016. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob. Agents Chemother. 60: 7216-7223. https://doi.org/10.1128/AAC.01601-16
  54. Hong JS, Kim JO, Lee H, Bae IK, Jeong SH, Lee K. 2015. Characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa in Korea. Infect. Chemother. 47: 33-40. https://doi.org/10.3947/ic.2015.47.1.33
  55. Hong JS, Choi N, Kim SJ, Choi KH, Roh KH, Lee S. 2020. Molecular characteristics of GES-type carbapenemase-producing. Microb. Drug Resist. 26: 605-610. https://doi.org/10.1089/mdr.2019.0302
  56. Samuelsen O, Toleman MA, Sundsfjord A, Rydberg J, Leegaard TM, Walder M, et al. 2010. Molecular epidemiology of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob. Agents Chemother. 54: 346-352. https://doi.org/10.1128/AAC.00824-09
  57. Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. 2011. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J. Clin. Microbiol. 49: 2578-2583. https://doi.org/10.1128/JCM.00102-11
  58. Maatallah M, Cheriaa J, Backhrouf A, Iversen A, Grundmann H, Do T, et al. 2011. Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PLoS One 6: e25617.
  59. Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Fuzi M, et al. 2006. Establishing clonal relationships between VIM-1-like metallo-β-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J. Clin. Microbiol. 44: 4309-4315. https://doi.org/10.1128/JCM.00817-06
  60. Pournaras S, Kock R, Mossialos D, Mellmann A, Sakellaris V, Stathopoulos C, et al. 2013. Detection of a phylogenetically distinct IMP-type metallo-β-lactamase, IMP-35, in a CC235 Pseudomonas aeruginosa from the Dutch-German border region (Euregio). J. Antimicrob. Chemother. 68: 1271-1276. https://doi.org/10.1093/jac/dkt004
  61. Pincus NB, Bachta KER, Ozer EA, Allen JP, Pura ON, Qi C, et al. 2020. Long-term persistence of an extensively drug-resistant subclade of globally distributed Pseudomonas aeruginosa clonal complex 446 in an academic medical center. Clin. Infect. Dis. 71: 1524-1531. https://doi.org/10.1093/cid/ciz973
  62. Geraci DM, Bonura C, Giuffr M, Saporito L, Graziano G, Aleo A, et al. 2015. Is the monoclonal spread of the ST258, KPC-3-producing clone being replaced in southern Italy by the dissemination of multiple clones of carbapenem-nonsusceptible, KPC-3-producing Klebsiella pneumoniae? Clin. Microbiol. Infect. 21: e15-e17. https://doi.org/10.1016/j.cmi.2014.08.022
  63. Roer L, Overballe-Petersen S, Hansen F, Schonning K, Wang M, Roder BL, et al. 2018. Escherichia coli sequence type 410 is causing new international high-risk clones. mSphere. 3: e00337-18.
  64. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, de la Cruz F. 2010. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74: 434-452. https://doi.org/10.1128/MMBR.00020-10
  65. Lee M, Choi T-J. 2020. Molecular analysis of carbapenem-resistant Enterobacteriaceae at a South Korean Hospital. pp. 389-398.
  66. Hong JS, Song W, Park MJ, Jeong S, Lee N, Jeong SH. 2021. Molecular characterization of the first emerged NDM-1-producing. Microb. Drug Resist. 27:1063-1070. https://doi.org/10.1089/mdr.2020.0374