DOI QR코드

DOI QR Code

Isolation and Characterization of Plant Growth-Promoting Bacteria for the Phytoremediation of Diesel- and Heavy Metal-Contaminated Soil

  • Yun-Yeong Lee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kyung-Suk Cho (Department of Environmental Science and Engineering, Ewha Womans University)
  • 투고 : 2023.08.10
  • 심사 : 2023.10.11
  • 발행 : 2023.12.28

초록

Plant growth-promoting (PGP) bacteria can be used as bioresources to enhance phytoremediation through their PGP traits and pollutant removal capacity. In this study, 49 rhizobacteria were primarily isolated from the rhizosphere of tall fescue grown in diesel- and heavy metal-contaminated soil. Their biosurfactant production, phosphate (P) solubilization, and siderophore production were qualitatively and quantitatively evaluated to identify superior PGP bacteria. The optimal conditions for the growth of PGP bacteria and the stability of their PGP traits were a temperature of 35℃, a pH of 7, and 2 days of cultivation time. Four superior PGP bacteria (Pseudomonas sp. NL3, Bacillus sp. NL6, Bacillus sp. LBY14, and Priestia sp. TSY6) were finally selected. Pseudomonas sp. NL3 exhibited superior biosurfactant production and P solubilization. Bacillus sp. NL6 showed the highest P solubilization and superior production of biosurfactants and siderophores. Bacillus sp. LBY14 offered the best siderophore production and impressive P solubilization. Priestia sp. TSY6 had superior capacity for all three PGP traits. Through their secretion of beneficial PGP metabolites, the four bacteria isolated in this study have the potential for use in the phytoremediation of contaminated soil.

키워드

과제정보

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government, the Ministry of Science and ICT (MICT) (2019R1A2C2006701 & 2022R1A2C2006615).

참고문헌

  1. Ullah A, Heng S, Munis MFH, Fahad S, Yang X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ. Exp. Bot. 117: 28-40. 
  2. Saeed Q, Xiukang W, Haider FU, Kucerik J, Mumtaz MZ, Holatko J, et al. 2021. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 22: 10529. 
  3. Saharan BS, Nehra V. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci. Med. Res. 21: 1-30. 
  4. Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala V, et al. 2018. Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4: 241-249. 
  5. Mulligan CN. 2021. Sustainable remediation of contaminated soil using biosurfactants. Front. Bioeng. Biotechnol. 9: 635196. 
  6. Teymouri M, Akhtari J, Karkhane M, Marzban A. 2016. Assessment of phosphate solubilization activity of rhizobacteria in mangrove forest. Biocatal. Agric. Biotechnol. 5: 168-172. 
  7. Ahemad M. 2015. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review. 3 Biotech 5: 111-121. 
  8. Rawat P, Das S, Shankhdhar D, Shankhdhar SC. 2021. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 21: 49-68. 
  9. Ahmed E, Holmstrom SJM. 2014. Siderophores in environmental research: roles and applications. Microb. Biotechnol. 7: 196-208. 
  10. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P. 2016. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. 23: 3984-3999. 
  11. Lee SY, Lee YY, Cho KS. 2023. Effect of Novosphingobium sp. CuT1 inoculation on the rhizoremediation of heavy metal- and diesel-contaminated soil planted with tall fescue. Environ. Sci. Pollut. Res. 30: 16612-16625. 
  12. Barakat KM, Hassan SWM, Darwesh OM. 2017. Biosurfactant production by haloalkaliphilic Bacillus strains isolated from Red Sea, Egypt. Egypt. J. Aquat. Res. 43: 205-211. 
  13. Morales-Guzman G, Ferrera-Cerrato R, Rivera-Cruz MC, Torres-Bustillos LG, Arteaga-Garibay RI, Mendoza-Lopez MR, et al. 2017. Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Appl. Soil Ecol. 121: 127-134. 
  14. Mihalache G, Mihasan M, Zamfirache MM, Stefan M, Raus L. 2018. Phosphate solubilizing bacteria from runner bean rhizosphere and their mechanism of action. Rom. Biotechnol. Lett. 23: 13853-13861. 
  15. Verma PP, Kaur M. 2015. Characterization of the mineral phosphate solubilizing activity of fluorescent Pseudomonas sp. isolated from rhizosphere of apple. Trends Biosci. 8: 6600-6604. 
  16. Louden BC, Haarmann D, Lynne AM. 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12: 51-53. 
  17. Elhaissoufi W, Khourchi S, Ibnyasser A, Ghoulam C, Rchiad Z, Zeroual Y, et al. 2020. Phosphate solubilizing rhizobacteria could have a stronger influence on wheat root traits and aboveground physiology than rhizosphere P solubilization. Front. Plant Sci. 11: 979. 
  18. Korean Ministry of Environment. 2017. Korean Standard Water Analysis Method, Revised in 2022. Available from https://www.law.go.kr/DRF/lawService.do?OC=me_pr&target=admrul&ID=2100000209158&type=HTML&mobileYn=. Accessed Aug. 7, 2023. 
  19. Hwang JS, Song HG. 2020. Antifungal activity of Bacillus subtilis isolates against toxigenic fungi. Korean J. Microbiol. 56: 28-35. 
  20. Nagarajkumar M, Bhaskaran R, Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159: 73-81. 
  21. Ashfaq M, Afzal A, Javed MA, Ali M, Rasool B, Shaheen S, et al. 2021. Identification and pathogenic characterization of bacteria causing rice grain discoloration in Pakistan. Int. J. Biol. Biotechnol. 18: 239-246. 
  22. Kim TG, Moon KE, Yun J, Cho KS. 2013. Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover. Appl. Microbiol. Biotechnol. 97: 3171-3181. 
  23. Singh P, Singh RK, Zhou Y, Wang J, Jiang Y, Shen N, et al. 2022. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. J. Plant Interact. 17: 220-238. 
  24. Eslami P, Hajfarajollah H, Bazsefidpar S. 2020. Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv. 10: 34014-34032. 
  25. Rocha e Silva NMP, Rufino RD, Luna JM, Santos VA, Sarubbo LA. 2014. Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal. Agric. Biotechnol. 3: 132-139. 
  26. Onwosi CO, Odibo FJC. 2012. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J. Microbiol. Biotechnol. 28: 937-942. 
  27. Janek T, Lukaszewicz M, Rezanka T, Krasowska A. 2010. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour. Technol. 101: 6118-6123. 
  28. Nadeem SM, Naveed M, Ayyub M, Khan MY, Ahmad M, Zahir ZA. 2016. Potential, limitations and future prospects of Pseudomonas spp. for sustainable agriculture and environment: A review. Soil Environ. 35: 106-145. 
  29. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, et al. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 6: 745. 
  30. Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N. 2008. Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J. Microbiol. Biotechnol. 25: 573-581. 
  31. Dorjey S, Dolkar D, Sharma R. 2017. Plant growth promoting rhizobacteria Pseudomonas: a review. Int. J. Curr. Microbiol. Appl. Sci. 6: 1335-1344. 
  32. David SR, Geoffroy VA. 2020. A review of asbestos bioweathering by siderophore-producing Pseudomonas: a potential strategy of bioremediation. Microorganisms 8: 1870. 
  33. Sah S, Singh N, Singh R. 2017. Iron acquisition in maize (Zea mays L.) using Pseudomonas siderophore. 3 Biotech 7: 121. 
  34. Shi P, Zhu K, Zhang Y, Chai T. 2016. Growth and cadmium accumulation of Solanum nigrum L. seedling were enhanced by heavy metal-tolerant strains of Pseudomonas aeruginosa. Water. Air. Soil Pollut. 227: 459. 
  35. Aloo BN, Makumba BA, Mbega ER. 2019. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol. Res. 219: 26-39. 
  36. Sansinenea E, Ortiz A. 2011. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 33: 1523-1538. 
  37. Ghojavand H, Vahabzadeh F, Roayaei E, Shahraki AK. 2008. Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J. Colloid Interface Sci. 324: 172-176. 
  38. Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choi MMF. 2014. Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122: 140-148. 
  39. Joshi SJ, Geetha SJ, Desai AJ. 2015. Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Appl. Biochem. Biotechnol. 177: 346-361. 
  40. Priya T, Usharani G. 2009. Comparative study for biosurfactant production by using Bacillus subtilis and Pseudomonas aeruginosa. Bot. Res. Int. 2: 284-287. 
  41. Joshi SJ, Geetha SJ, Yadav S, Desai AJ. 2013. Optimization of bench-scale production of biosurfactant by Bacillus licheniformis R2. APCBEE Procedia 5: 232-236. 
  42. Mouafi FE, Abo Elsoud MM, Moharam ME. 2016. Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnol. Rep. 9: 31-37. 
  43. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. 2020. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 128: 1583-1594. 
  44. Mehta P, Walia A, Chauhan A, Kulshrestha S, Shirkot CK. 2013. Phosphate solubilisation and plant growth promoting potential by stress tolerant Bacillus sp. isolated from rhizosphere of apple orchards in trans Himalayan region of Himachal Pradesh. Ann. Appl. Biol. 163: 430-443. 
  45. Rahman CH, Miloud B, Rachid D, Ahcene B, Hakim H. 2017. Optimization of inorganic phosphate solubilization by Pseudomonas fluorescens and Bacillus sp. isolated from wheat rhizospheric soil. Int. J. Biosci. 10: 142-150. 
  46. Banerjee S, Palit R, Sengupta C, Standing D. 2010. Stress induced phosphate solubilization by 'Arthrobacter' sp. and 'Bacillus' sp. isolated from tomato rhizosphere. Aust. J. Crop Sci. 4: 378-383. 
  47. Soni R, Keharia H. 2021. Phytostimulation and biocontrol potential of gram-positive endospore-forming Bacilli. Planta 254: 49. 
  48. Yu S, Teng C, Bai X, Liang J, Song T, Dong L, Jin Y, Qu J. 2017. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of Pb from soil. J. Microbiol. Biotechnol. 27: 1500-1512. 
  49. Yu X, Ai C, Xin L, Zhou G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47: 138-145. 
  50. Biedendieck R, Knuuti T, Moore SJ, Jahn D. 2021. The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl. Microbiol. Biotechnol. 105: 5719-5737. 
  51. Bashir S, Iqbal A, Hasnain S, White JF. 2021. Screening of sunflower associated bacteria as biocontrol agents for plant growth promotion. Arch. Microbiol. 203: 4901-4912. 
  52. Sharma K, Sharma S, Vaishnav A, Jain R, Singh D, Singh HB, et al. 2022. Salt-tolerant PGPR strain Priestia endophytica SK1 promotes fenugreek growth under salt stress by inducing nitrogen assimilation and secondary metabolites. J. Appl. Microbiol. 133: 2802-2813. 
  53. Shahid M, Zeyad MT, Syed A, Singh UB, Mohamed A, Bahkali AH, et al. 2022. Stress-tolerant endophytic isolate Priestia aryabhattai BRP-9 modulates physio-biochemical mechanisms in wheat (Triticum aestivum L.) for enhanced salt tolerance. Int. J. Environ. Res. Public Health 19: 10883. 
  54. Sandhu M, Paul AT, Prockow J, de la Lastra JMP, Jha PN. 2022. PCB-77 biodegradation potential of biosurfactant producing bacterial isolates recovered from contaminated soil. Front. Microbiol. 13: 952374. 
  55. Siddiqui Z, Grohmann E, Malik A. 2023. Degradation of alkane hydrocarbons by Priestia megaterium ZS16 and sediments consortia with special reference to toxicity and oxidative stress induced by the sediments in the vicinity of an oil refinery. Chemosphere 317: 137886. 
  56. Uyar E, Avci T. 2023. Screening and molecular identification of biosurfactant/bioemulsifier producing bacteria from crude oil contaminated soils samples. Biologia 78: 2179-2193. 
  57. Kaminsky LM, Bell TH. 2022. Novel primers for quantification of Priestia megaterium populations in soil using qPCR. Appl. Soil Ecol. 180: 104628. 
  58. Hu X, Roberts DP, Xie L, Maul JE, Yu C, Li Y, et al. 2013. Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape. Can. J. Microbiol. 59: 231-236. 
  59. Jiang H, Qi P, Wang T, Chi X, Wang M, Chen M, et al. 2019. Role of halotolerant phosphate-solubilising bacteria on growth promotion of peanut (Arachis hypogaea) under saline soil. Ann. Appl. Biol. 174: 20-30. 
  60. Lin XR, Chen HB, Li YX, Zhou ZH, Li JB, Wang YQ, et al. 2022. Priestia sp. LWS1 is a selenium-resistant plant growth-promoting bacterium that can enhance plant growth and selenium accumulation in Oryza sativa L. Agronomy 12: 1301. 
  61. Rehan M, Al-Turki A, Abdelmageed AHA, Abdelhameid NM, Omar AF. 2023. Performance of plant-growth-promoting rhizobacteria (PGPR) isolated from sandy soil on growth of tomato (Solanum lycopersicum L.). Plants 12: 1588.