DOI QR코드

DOI QR Code

A Novel Approach for Assessing the Proteolytic Potential of Filamentous Fungi on the Example of Aspergillus spp.

  • Anna Shestakova (Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University) ;
  • Alexander Osmolovskiy (Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University) ;
  • Viktoria Lavrenova (Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University) ;
  • Daria Surkova (Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University) ;
  • Biljana Nikolic (Faculty of Biology, University of Belgrade) ;
  • Zeljko Savkovic (Faculty of Biology, University of Belgrade)
  • 투고 : 2023.09.19
  • 심사 : 2023.11.16
  • 발행 : 2023.12.28

초록

Proteolytic enzymes produced by filamentous fungi can degrade various fibrous and globular proteins along with other metabolites that may also find application in biotechnology. In this study, the effect of proteolytic enzymes of 22 Aspergillus strains on various proteins was investigated using protein-containing diagnostic media. Subsequently, a new parameter estimating secreted proteinases specificity towards fibrous or globular proteins without its advanced biochemical research - index of severity of proteolytic action (ISPA) - was suggested. This index determines mycozymes specificity in following manner: its value increases with greater affinity to fibrous proteins, decreases if there is higher affinity to globular proteins. ISPA value was the lowest (0.52) for Aspergillus domesticus, indicating the highest specificity to globular proteins, the highest one (1.26) for A. glaucus, whose proteinases best hydrolyzed fibrous proteins. However, the highest overall proteolytic potential was observed for Aspergillus melleus. The ability to produce acid, alkali and extracellular pigments was evaluated for all isolated strains as well.

키워드

참고문헌

  1. Popova EA, Bednenko DM, Osmolovskiy AA, Kreyer VG, Kotova IB, Egorov NS. 2017. Secretion of extracellular proteinases active against fibrillar proteins by micromycetes. Mosc. Univ. Biol. Sci. Bull. 72: 206-210. https://doi.org/10.3103/S0096392517040101
  2. Osmolovskiy AA, Lukianova AA, Zvonareva ES, Kreyer VG, Baranova NA, Egorov NS. 2018. Combined microbiological approach to screening of producers of proteases with hemostasis system proteins activity among micromycetes. Biotechnol. Rep. (Amsterdam, Netherlands) 19: e00265.
  3. Timorshina S, Popova E, Kreyer V, Baranova N, Osmolovskiy A. 2022. Keratinolytic properties of Aspergillus clavatus promising for biodegradation. Int. J. Environ. Res. Public Health 19: 13939.
  4. Osmolovskiy AA, Rukavitsyna ED, Kreier VG, Baranova NA, Egorov NS. 2017. Production of proteinases with fibrinolytic and fibrinogenolytic activity by a micromycete Aspergillus ochraceus. Microbiology 86: 512-516. https://doi.org/10.1134/S0026261717040105
  5. Arima K, Iwasaki S, Tamura G. 1967. Milk clotting enzyme from microorganisms: Part I. Screening test and the identification of the potent fungus Part II. The enzyme production and the properties of crude enzyme. Agric. Biol. Chem. 31: 540-551. https://doi.org/10.1080/00021369.1967.10858849
  6. Sharkova TS, Kurakov AV, Osmolovskiy AA, Matveeva EO, Kreyer VG, Baranova NA, et al. 2015. Screening of producers of proteinases with fibrinolytic and collagenolytic activities among micromycetes. Microbiology 84: 359-364. https://doi.org/10.1134/S0026261715030182
  7. Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, et al. 2019. Microbial proteases applications. Front. Bioeng. Biotechnol. 7: 110.
  8. Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R. 2018. Biotechnological applications of proteases in food technology. Compr. Rev. Food Sci. Food Saf. 17: 412-436. https://doi.org/10.1111/1541-4337.12326
  9. Motyan JA, Toth F, Tozser J. 2013. Research applications of proteolytic enzymes in molecular biology. Biomolecules 3: 923-942. https://doi.org/10.3390/biom3040923
  10. Fogarty WM. 1994. Enzymes of the genus Aspergillus. In Aspergillus, edited by J. E. Smith, pp. 177-218. Boston, MA: Springer USA.
  11. Wanderley MCDA, Duarte JMW, Lima JLD, Lima CDA, Teixeira JAC, Porto ALF, et al. 2017. Collagenolytic enzymes produced by fungi: A systematic review. Braz. J. Microbiol. 48: 13-24. https://doi.org/10.1016/j.bjm.2016.08.001
  12. Osmolovskiy AA, Schmidt L, Orekhova AV, Komarevtsev SK, Kreyer VG, Shabunin SV, et al. 2021. Action of extracellular proteases of Aspergillus flavus and Aspergillus ochraceus micromycetes on plasma hemostasis proteins. Life 11: 782.
  13. Takenaka S, Lim L, Fukami T, Yokota S, Doi M. 2019. Isolation and characterization of an aspartic protease able to hydrolyze and decolorize heme proteins from Aspergillus glaucus. J. Sci. Food Agric. 99: 2042-2047. https://doi.org/10.1002/jsfa.9339
  14. Lambrecht BN, Hammad H. 2013. Asthma and coagulation. New Eng. J. Med. 369: 1964-1966. https://doi.org/10.1056/NEJMcibr1311045
  15. Din G, Hassan A, Rafiq M, Hasan F, Badshah M, Khan S, et al. 2020. Characterization of organic acid producing Aspergillus tubingensis FMS1 and its role in metals leaching from soil. Geomicrobiol. J. 37: 336-344. https://doi.org/10.1080/01490451.2019.1701585
  16. Fang Z, Yong YC, Zhang J, Du G, Chen J. 2017. Keratinolytic protease: A green biocatalyst for leather industry. Appl. Microbiol. Biotechnol. 101: 7771-7779. https://doi.org/10.1007/s00253-017-8484-1
  17. Verma A, Singh H, Anwar S, Chattopadhyay A, Tiwari KK, Kaur S, et al. 2017. Microbial keratinases: Industrial enzymes with waste management potential. Crit. Rev. Biotechnol. 37: 476-491. https://doi.org/10.1080/07388551.2016.1185388
  18. Chanalia P, Gandhi D, Jodha D, Singh J. 2011. Applications of microbial proteases in pharmaceutical industry. Rev. Med. Microbiol. 22: 96-101. https://doi.org/10.1097/MRM.0b013e3283494749
  19. Landers CT, Tung HY, Knight JM, Madison MC, Wu Y, Zeng Z, et al. 2019. Selective cleavage of fibrinogen by diverse proteinases initiates innate allergic and antifungal immunity through CD11b. J. Biol. Chem. 294: 8834-8847. https://doi.org/10.1074/jbc.RA118.006724
  20. Iadarola P, Lungarella G, Martorana PA, Viglio S, Guglielminetti M, Korzus E, et al. 1998. Lung injury and degradation of extracellular matrix components by Aspergillus fumigatus serine proteinase. Exp. Lung Res. 24: 233-251. https://doi.org/10.3109/01902149809041532
  21. Hirokawa K, Shimoji K, Kajiyama N. 2005. An enzymatic method for the determination of hemoglobinA(1C). Biotechnol. Lett. 27: 963-968. https://doi.org/10.1007/s10529-005-7832-x
  22. Oda Y, Yonetsu A, Urakami T, Tonomura K. 2000. Degradation of polylactide by commercial proteases. J. Polym. Environ. 8: 29-32. https://doi.org/10.1023/A:1010120128048
  23. Lagashetti AC, Dufosse L, Singh SK, Singh PN. 2019. Fungal pigments and their prospects in different industries. Microorganisms 7: 604.
  24. Lin L, Xu J. 2022. Production of fungal pigments: Molecular processes and their applications. J. Fungi 9: 44.