DOI QR코드

DOI QR Code

Distribution and Characteristics of Penicillium spp. in Meju, aKorean Traditional Fermented Soybean Brick

전통 메주에서의 Penicillium spp.의 분포 및 특징

  • Kang Uk Kim (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Jungho Lee (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Shin Young Roh (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Yong-Ho Choi (Sempio Fermentation Research Center, Sempio Foods Company) ;
  • Byung-Serk Hurh (Sempio Fermentation Research Center, Sempio Foods Company) ;
  • Inhyung Lee (Department of Bio and Fermentation Convergence Technology, Kookmin University)
  • 김강욱 (국민대학교 바이오발효융합학과) ;
  • 이정호 (국민대학교 바이오발효융합학과) ;
  • 노신영 (국민대학교 바이오발효융합학과) ;
  • 최용호 ((주)샘표식품, 우리발효중심연구소) ;
  • 허병석 ((주)샘표식품, 우리발효중심연구소) ;
  • 이인형 (국민대학교 바이오발효융합학과)
  • Received : 2023.09.28
  • Accepted : 2023.11.07
  • Published : 2023.12.28

Abstract

Penicillium spp. are frequently found in meju, a Korean traditional fermented soybean brick. We isolated and identified 96 Penicillium spp. from 22 traditional meju, and their β-tubulin genes were sequenced for the genetic and taxonomic study. Penicillium Section Viridicata was the most commonly isolated group. Notably, we also isolated and identified Penicillium roqueforti, a crucial industrial strain employed in the fermentation of blue cheese. Additionally, certain strains exhibited relatively high protease and γ-glutamyl transpeptidase activities, suggesting that they might contribute to the development of kokumi flavor during meju fermentation. Interestingly, all eight Penicillium spp., including P. roqueforti, were found to possess both types of MAT1 genes. This intriguing finding suggests the feasibility of strain improvement through mating, thereby offering opportunities for industrial applications. Therefore, these studies pave the way for a deeper exploration of Penicillium's role in meju fermentation, potentially leading to the development of starters for producing plant-based cheese-flavored condiments.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation of Korea (no. 2021R1F1A1058263), and by Biomaterials Specialized Graduate Program through the Korea Environmental Industry & Technology Institute (KEITI) funded by the Ministry of Environment (MOE).

References

  1. Jung JY, Lee SH, Jeon CO. 2014. Microbial community dynamics during fermentation of doenjang-meju, traditional Korean fermented soybean. Int. J. Food Microbiol. 185: 112-120. https://doi.org/10.1016/j.ijfoodmicro.2014.06.003
  2. Hong S-B, Kim D-H, Samson RA. 2015. Aspergillus associated with Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. Mycobiology 43: 218-224. https://doi.org/10.5941/MYCO.2015.43.3.218
  3. Kim D-H, Kim S-H, Kwon S-W, Lee J-K, Hong S-B. 2013. Fungal diversity of rice straw for meju fermentation.J. Microbiol. Biotechol. 23: 1654-1663. https://doi.org/10.4014/jmb.1307.07071
  4. Kim D-H, Kim S-H, Kwon S-W, Lee J-K, Hong S-B. 2015. The mycobiota of air inside and outside the meju fermentation room and the origin of meju fungi. Mycobiology 43: 258-265. https://doi.org/10.5941/MYCO.2015.43.3.258
  5. Lee KR, Yang SM, Cho SM, Kim MH, Hong S-Y, Chung SH. 2017. Aflatoxin B1 detoxification by Aspergillus oryzae from meju, a traditional Korean fermented soybean starter. J. Microbiol. Biotechnol. 27: 57-66. https://doi.org/10.4014/jmb.1607.07064
  6. Kim KM, Lim JH, Lee JJ, Hurh B-S, Lee IH. 2017. Characterization of Aspergillus sojae isolated from meju, Korean traditional fermented soybean brick. J. Microbiol. Biotechnol. 27: 251-261. https://doi.org/10.4014/jmb.1610.10013
  7. Toelstede S, Hofmann T. 2009. Kokumi-active glutamyl peptides in cheeses and their biogeneration by Penicillium roquefortii. J. Agric. Food Chem. 57: 3738-3748. https://doi.org/10.1021/jf900280j
  8. Papagianni M, Papamichael E. 2007. Modeling growth, substrate consumption and product formation of Penicillium nalgiovense grown on meat simulation medium in submerged batch culture. J. Ind. Microbiol. Biotechnol. 34: 225-231. https://doi.org/10.1007/s10295-006-0190-4
  9. Samson RA, Seifert KA, Kuijpers AFA, Houbraken J, Frisvad JC. 2004. Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud. Mycol. 49: 175-200.
  10. Shimizu K, Keller NP. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157: 591-600. https://doi.org/10.1093/genetics/157.2.591
  11. Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  12. Lim JH, Choi Y-H, Hurh B-S, Lee IH. 2019. Strain improvement of Aspergillus sojae for increased L-leucine aminopeptidase and protease preduction. Food Sci. Technol. 28: 121-128. https://doi.org/10.1007/s10068-018-0427-9
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  14. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1): W293-W296. https://doi.org/10.1093/nar/gkab301
  15. Ropars J, Dupont J, Fontanillas E, Rodriguez de la Vega RC, Malagnac F, Coton M, et al. 2012. Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti. PLoS One 7: e49665.
  16. Visagie CM, Houbraken J, Frisvad JC, Hong S-B, Klaassen CHW, Perrone G, et al. 2014. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 78: 343-371. https://doi.org/10.1016/j.simyco.2014.09.001
  17. Frisvad JC, Samson RA. 2004. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and airborne terverticillate Penicillia and their mycotoxins. Stud. Mycol. 49: 1-174.
  18. Polonelli L, Morace G, Rosa R, Castagnola M, Frisvad JC. 1987. Antigenic characterization of Penicillium camemberti and related common cheese contaminants. Appl. Environ. Microbiol. 53: 872-878. https://doi.org/10.1128/aem.53.4.872-878.1987
  19. Ropars J, Didiot E, de La Vega RCR, Bennetot B, Coton M, Poirier E, et al. 2020. Domestication of the emblematic white cheese-making fungus Penicillium camemberti and its diversification into two varieties. Curr. Biol. 30: 4441-4453. https://doi.org/10.1016/j.cub.2020.08.082
  20. Garcia-Estrada C, Martin J-F. 2016. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl. Microbiol. Biotechnol. 100: 8303-8313. https://doi.org/10.1007/s00253-016-7788-x
  21. Houbraken J, Frisvad JC, Samson RA. 2011. Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2: 87-95. https://doi.org/10.5598/imafungus.2011.02.01.12
  22. Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, et al. 2012. New penicillin-producing Penicillium spp. and an overview of section Chrysogena. Persoonia 29: 78-100. https://doi.org/10.3767/003158512X660571
  23. Ropars J, Lopez-Villavicencio M, Dupont J, Snirc A, Gillot G, Coton M, et al. 2014. Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti. Evol. Appl. 7: 433-441. https://doi.org/10.1111/eva.12140