Acknowledgement
This work was supported by grants from the National Research Foundation of Korea (no. 2021R1F1A1058263), and by Biomaterials Specialized Graduate Program through the Korea Environmental Industry & Technology Institute (KEITI) funded by the Ministry of Environment (MOE).
References
- Jung JY, Lee SH, Jeon CO. 2014. Microbial community dynamics during fermentation of doenjang-meju, traditional Korean fermented soybean. Int. J. Food Microbiol. 185: 112-120. https://doi.org/10.1016/j.ijfoodmicro.2014.06.003
- Hong S-B, Kim D-H, Samson RA. 2015. Aspergillus associated with Meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. Mycobiology 43: 218-224. https://doi.org/10.5941/MYCO.2015.43.3.218
- Kim D-H, Kim S-H, Kwon S-W, Lee J-K, Hong S-B. 2013. Fungal diversity of rice straw for meju fermentation.J. Microbiol. Biotechol. 23: 1654-1663. https://doi.org/10.4014/jmb.1307.07071
- Kim D-H, Kim S-H, Kwon S-W, Lee J-K, Hong S-B. 2015. The mycobiota of air inside and outside the meju fermentation room and the origin of meju fungi. Mycobiology 43: 258-265. https://doi.org/10.5941/MYCO.2015.43.3.258
- Lee KR, Yang SM, Cho SM, Kim MH, Hong S-Y, Chung SH. 2017. Aflatoxin B1 detoxification by Aspergillus oryzae from meju, a traditional Korean fermented soybean starter. J. Microbiol. Biotechnol. 27: 57-66. https://doi.org/10.4014/jmb.1607.07064
- Kim KM, Lim JH, Lee JJ, Hurh B-S, Lee IH. 2017. Characterization of Aspergillus sojae isolated from meju, Korean traditional fermented soybean brick. J. Microbiol. Biotechnol. 27: 251-261. https://doi.org/10.4014/jmb.1610.10013
- Toelstede S, Hofmann T. 2009. Kokumi-active glutamyl peptides in cheeses and their biogeneration by Penicillium roquefortii. J. Agric. Food Chem. 57: 3738-3748. https://doi.org/10.1021/jf900280j
- Papagianni M, Papamichael E. 2007. Modeling growth, substrate consumption and product formation of Penicillium nalgiovense grown on meat simulation medium in submerged batch culture. J. Ind. Microbiol. Biotechnol. 34: 225-231. https://doi.org/10.1007/s10295-006-0190-4
- Samson RA, Seifert KA, Kuijpers AFA, Houbraken J, Frisvad JC. 2004. Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud. Mycol. 49: 175-200.
- Shimizu K, Keller NP. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157: 591-600. https://doi.org/10.1093/genetics/157.2.591
- Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61: 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
- Lim JH, Choi Y-H, Hurh B-S, Lee IH. 2019. Strain improvement of Aspergillus sojae for increased L-leucine aminopeptidase and protease preduction. Food Sci. Technol. 28: 121-128. https://doi.org/10.1007/s10068-018-0427-9
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
- Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1): W293-W296. https://doi.org/10.1093/nar/gkab301
- Ropars J, Dupont J, Fontanillas E, Rodriguez de la Vega RC, Malagnac F, Coton M, et al. 2012. Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti. PLoS One 7: e49665.
- Visagie CM, Houbraken J, Frisvad JC, Hong S-B, Klaassen CHW, Perrone G, et al. 2014. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 78: 343-371. https://doi.org/10.1016/j.simyco.2014.09.001
- Frisvad JC, Samson RA. 2004. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and airborne terverticillate Penicillia and their mycotoxins. Stud. Mycol. 49: 1-174.
- Polonelli L, Morace G, Rosa R, Castagnola M, Frisvad JC. 1987. Antigenic characterization of Penicillium camemberti and related common cheese contaminants. Appl. Environ. Microbiol. 53: 872-878. https://doi.org/10.1128/aem.53.4.872-878.1987
- Ropars J, Didiot E, de La Vega RCR, Bennetot B, Coton M, Poirier E, et al. 2020. Domestication of the emblematic white cheese-making fungus Penicillium camemberti and its diversification into two varieties. Curr. Biol. 30: 4441-4453. https://doi.org/10.1016/j.cub.2020.08.082
- Garcia-Estrada C, Martin J-F. 2016. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl. Microbiol. Biotechnol. 100: 8303-8313. https://doi.org/10.1007/s00253-016-7788-x
- Houbraken J, Frisvad JC, Samson RA. 2011. Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2: 87-95. https://doi.org/10.5598/imafungus.2011.02.01.12
- Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG, et al. 2012. New penicillin-producing Penicillium spp. and an overview of section Chrysogena. Persoonia 29: 78-100. https://doi.org/10.3767/003158512X660571
- Ropars J, Lopez-Villavicencio M, Dupont J, Snirc A, Gillot G, Coton M, et al. 2014. Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti. Evol. Appl. 7: 433-441. https://doi.org/10.1111/eva.12140