DOI QR코드

DOI QR Code

Antibiotic Reversal Activity of Piper longum Fruit Extracts against Staphylococcus aureus Multi-Drug Resistant Phenotype

  • Maryam Salah Ud Din (Institute of Industrial Biotechnology, Government College University) ;
  • Umar Farooq Gohar (Institute of Industrial Biotechnology, Government College University) ;
  • Hamid Mukhtar (Institute of Industrial Biotechnology, Government College University) ;
  • Ibrar Khan (Department of Microbiology, Abbottabad University of Science and Technology) ;
  • John Morris (School of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang) ;
  • Soisuda Pornpukdeewattana (Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang) ;
  • Salvatore Massa (Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang)
  • 투고 : 2023.07.25
  • 심사 : 2023.11.01
  • 발행 : 2023.12.28

초록

Irrational and injudicious use of antibiotics, easy availability of them as over-the-counter drugs in economically developing countries, and unavailability of regulatory policies governing antimicrobial use in agriculture, animals, and humans, has led to the development of multi-drug resistance (MDR) bacteria. The use of medicinal plants can be considered as an alternative, with a consequent impact on microbial resistance. We tested extracts of Piper longum fruits as new natural products as agents for reversing the resistance to antibiotics. Six crude extracts of P. longum fruits were utilized against a clinical isolate of multidrug-resistant Staphylococcus aureus.The antibiotic susceptibility testing disc method was used in the antibiotic resistance reversal analysis. Apart from cefoxitin and erythromycin, all other antibiotics used (lincosamides [clindamycin], quinolones [levofloxacin and ciprofloxacin], and aminoglycosides [amikacin and gentamicin]) were enhanced by P. longum extracts. The extracts that showed the greatest synergy with the antibiotics were EAPL (ethyl acetate [extract of] P. longum), n-BPL (n-butanol [extract of] P. longum), and MPL (methanolic [extract of] P. longum The results of this study suggest that P. longum extracts have the ability to increase the effectiveness of different classes of antibiotics and reverse their resistance. However, future studies are needed to elucidate the molecular mechanisms behind the synergy between antibiotic and phytocompound(s) and identify the active biomolecules of P. longum responsible for the synergy in S. aureus.

키워드

과제정보

The authors extend their thanks to the anonymous reviewers for their insightful comments that helped improve the quality of this manuscript.

참고문헌

  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. 2008. Global trends in emerging infectious diseases. Nature 451: 990-993. https://doi.org/10.1038/nature06536
  2. Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, et al. 2020. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit. Rev. Microbiol. 46: 578-599. https://doi.org/10.1080/1040841X.2020.1813687
  3. WHO. Antimicrobial resistance global report on surveillance 2014: summary. Available from: https://reliefweb.int/report/world/antimicrobial-resistance-global-report-surveillance-2014. Accessed Jan. 15, 2023.
  4. WEF (World Economic Forum). Global Risks. Eighth Edition, 2013; 28-33. Available from:http://www3.weforum.org/docs/WEF_GlobalRisks_Report_2013.pdf. Accessed Jan. 15, 2023.
  5. Jee Y, Carlson J, Rafai E, Musonda K, Huong TT, Daza P, et al. 2018. Antimicrobial resistance: a threat to global health. Lancet Infect. Dis. 18: 939-940. https://doi.org/10.1016/S1473-3099(18)30471-7
  6. Cizman M, Srovin TP. 2018. Antibiotic consumption and resistance of gram-negative pathogens (collateral damage). GMS Infect. Dis. 6: Doc05.
  7. Machowska A, Stalsby Lundborg C. 2019. Drivers of irrational use of antibiotics in Europe. Int. J. Environ. Res. Public Health 16: 27.
  8. Dadgostar P. 2019. Antimicrobial resistance: implications and costs. Infect. Drug Resist. 12: 3903.
  9. Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. Pharm. Ther. 40: 277-283.
  10. Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, et al. 2022. Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 11: 200.
  11. Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. 2019. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol. 5: 117-137. https://doi.org/10.3934/microbiol.2019.2.117
  12. Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. 2019. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob. Resist. Infect. Control 8: 1-28. https://doi.org/10.1186/s13756-018-0426-x
  13. Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J, et al. 2019. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 308: 294-303. https://doi.org/10.1016/j.cbi.2019.05.050
  14. Hu ZQ, Zhao WH, Hara Y, Shimamura T. 2001. Epigallocatechin gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 48: 361-364. https://doi.org/10.1093/jac/48.3.361
  15. Oluwatuyi M, Kaatz GW, Gibbons S. 2004. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 65: 3249-3254. https://doi.org/10.1016/j.phytochem.2004.10.009
  16. Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, et al. 2001. Marked potentiation of activity of β-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob. Agents Chemother. 45: 3198-3201. https://doi.org/10.1128/AAC.45.11.3198-3201.2001
  17. Kumar A, Khan IA, Koul S, Koul JL, Taneja SC, Ali I, et al. 2008. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J. Antimicrob. Chemother. 61: 1270-1276. https://doi.org/10.1093/jac/dkn088
  18. Choudhary N, Singh V. 2018. A census of P. longum phytochemicals and their network pharmacological evaluation for identifying novel drug-like molecules against various diseases, with a special focus on neurological disorders. PLoS One 13: e0191006. 19 . Choudhury PR, Choudhury MD, Ningthoujam SS, Das D, Nath D, Talukdar AD. 2015. Ethnomedicinal plants used by traditional healers of North Tripura district, Tripura, North East India. J. Ethnopharmacol. 166: 135-148. https://doi.org/10.1016/j.jep.2015.03.026
  19. Yadav V, Krishnan A, Vohora D. 2020. A systematic review on Piper longum L. Bridging traditional knowledge and pharmacological evidence for future translational research. J. Ethnopharmacol. 247: 112255.
  20. Khan IA, Mirza ZM, Kumar A, Verma V, Qazi GN. 2006. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother. 50: 810-812. https://doi.org/10.1128/AAC.50.2.810-812.2006
  21. Kumar A, Khan IA, Koul S, Koul JL, Taneja SC, Ali I, et al. 2008. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J. Antimicrob. Chemother. 61: 1270-1276. https://doi.org/10.1093/jac/dkn088
  22. Sharma S, Kumar M, Sharma S, Nargotra A, Koul S, Khan IA. 2010. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65: 1694-1701. https://doi.org/10.1093/jac/dkq186
  23. Hegeto LA, Caleffi-Ferracioli KR, Perez de Souza J, Almeida AL, Nakamura de Vasconcelos SS, Barros IL, et al. 2019. Promising antituberculosis activity of piperine combined with antimicrobials: a systematic review. Microb. Drug Resist. 25: 120-126. https://doi.org/10.1089/mdr.2018.0107
  24. Kumar V, Shriram V, Mulla J. 2013. Antibiotic resistance reversal of multiple drug resistant bacteria using Piper longum fruit extract. J. Appl. Pharm. Sci. 3: 112-116.
  25. Mushtaq A, Anwar R, Ahmad M. 2018. Lavandula stoechas L alleviates dementia by preventing oxidative damage of cholinergic neurons in mice brain. Trop J. Pharm. Res. 17: 1539-1447.
  26. Procop W, Church DL, Hall GS, Janda WM. 2017. Gram-positive Cocci Part I: Staphylococci and related Gram-positive Cocci, pp. 670-1105. In Koneman's Color Atlas and Textbook of Diagnostic Microbiology, 7th Ed. Wolters Kluwer Health, Philadelphia.
  27. CLSI (Clinical and Laboratory Standards Institute). 2018. Performance standards for antimicrobial susceptibility testing; 29th Information supplement. CLSI document M100-S29. Clinical and Laboratory Standards Institute, Wayne, PA.
  28. Lewis JS, Bush K. 2015. Antibacterial agents. pp. 1171-1211. In Jorgensen et al. (eds), Manual of Clinical Microbiology, 11th Edition, American Society of Microbiology Press, Washington, DC.
  29. Hu ZQ, Zhao WH, Hara Y, Shimamura T. 2001. Epigallocatechin gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 48: 361-364. https://doi.org/10.1093/jac/48.3.361
  30. Pancu DF, Scurtu A, Macasoi IG, Marti D, Mioc M, Soica C, et al. 2021. Antibiotics: conventional therapy and natural compounds with antibacterial activity-A pharmaco-toxicological screening. Antibiotics 10: 401.
  31. Ahirrao P, Tambat R, Chandal N, Mahey N, Kamboj A, Jain UK, et al. 2020. MsrA efflux pump inhibitory activity of Piper cubeba Lf and its phytoconstituents against Staphylococcus aureus RN4220. Chem. Biodivers. 17: e2000144.
  32. Iobbi V, Brun P, Bernabe G, Dougue Kentsop RA, Donadio G, Ruffoni B, et al. 2021. Labdane diterpenoids from Salvia tingitana Etl. synergize with clindamycin against methicillin-resistant Staphylococcus aureus. Molecules 26: 6681.
  33. Leal AL, Bezerra CF, Confortin C, da Silva LE, Marinho EM, Marinho MM, et al. 2021. Chemical composition and potentiating action of Norfloxacin mediated by the essential oil of Piper caldense CDC against Staphylococcus aureus strains overexpressing efflux pump genes. Arch. Microbiol. 203: 4727-736. https://doi.org/10.1007/s00203-021-02393-5
  34. Skold O. 2011. Antibiotics and antibiotic resistance. p.138. John Wiley & Sons. Hoboken, New Jersey, USA.
  35. Eliopoulos GM. 1995. In vitro activity of fluoroquinolones against gram-positive bacteria. Drug. 49 Suppl 2: 48-57. https://doi.org/10.2165/00003495-199500492-00009
  36. Yoshida H, Bogaki MA, Nakamura MI, Nakamura SH. 1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 34: 1271-1272. https://doi.org/10.1128/AAC.34.6.1271
  37. Markham PN, Westhaus E, Klyachko K, Johnson ME, Neyfakh AA. 1999. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother. 43: 2404-2408. https://doi.org/10.1128/AAC.43.10.2404
  38. Macedo da Silva RO, Goncalves Castro JW, de Menezes Dantas Junior O, Justino de Araujo AC, do Nascimento Silva Leandro MK, Oliveira Costa RJ, et al. 2019. Photoinduced antibacterial activity of the essential oils from Eugenia brasiliensis Lam and Piper mosenii C. DC. by blue led light. Antibiotics 8: 242.