DOI QR코드

DOI QR Code

Bioflocculant and Anticorrosive Activities of the Biopolymer Produced by Lysinibacillus macroides

  • Received : 2023.08.22
  • Accepted : 2023.09.19
  • Published : 2023.12.28

Abstract

The biopolymer produced by Lysinibacillus macroides can be useful as an emulsifying agent, flocculating agent, anti-oxidative agent, and anti-corrosive agent. The present work focused on the functional activities of this biopolymer such as bioflocculant and anti-corrosion. The results of the study for the biopolymer as a bioflocculating agent reveal that the biopolymer gave 72.3% flocculating activity against activated carbon at a concentration of 5 mg/l. In the optimization study, the highest bioflocculant activity was obtained in the presence of CaCl2 mineral at 15% biopolymer concentration, 7.0 pH, and 40℃ temperature. The biopolymer was also studied for its anti-corrosive nature and observed that it was able to prevent corrosion of steel paper clips in a 6% CaCl2 solution at a concentration of 0.5% after 7 days.

Keywords

Acknowledgement

The authors are thankful to excel industries limited for providing a laboratory facility for research work and financial support.

References

  1. Krishnamurthy M, Uthaya CJ, Thangavel M, Annadurai V, Rajendran R, Gurusamy A. 2019. Optimization, compositional analysis, and characterization of exopolysaccharides produced by multimetal resistant Bacillus cereus KMS3-1. Carbohydr. Polym. 227: 115369-115395.  https://doi.org/10.1016/j.carbpol.2019.115369
  2. Nouha K, RD T, RY S. 2016. EPS producing microorganisms from municipal wastewater activated sludge. J. Petroleum Environ. Biotechnol. 7: 255-267. 
  3. Kumar AS, Mody K, Jha B. 2007. Bacterial exopolysaccharides-a perception. J. Basic Microbiol. 47: 103-117.  https://doi.org/10.1002/jobm.200610203
  4. Li WW, Zhou WZ, Zhang YZ, Wang J, Zhu XB. 2008. Flocculation behavior and mechanism of an exopolysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Bioresour. Technol. 99: 6893-6899.  https://doi.org/10.1016/j.biortech.2008.01.050
  5. Qin G, Zhu L, Chen X, Wang PG, Zhang Y. 2007. Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiol. 153: 1566-1572.  https://doi.org/10.1099/mic.0.2006/003327-0
  6. Muralidharan J, Jayachandran S. 2003. Physicochemical analyses of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolyticus. Process Biochem. 38: 841-847.  https://doi.org/10.1016/S0032-9592(02)00021-3
  7. Ignatova-Ivanova T. 2017. Exopolysaccharides from Bacteria with Novel Applimineral, pp. 345-354, In Immunotherapy-Myths, Reality, Ideas, Future, IntechOpen. 
  8. Gaikwad KM, Pansare GE, Madane MP, Mulay YR. 2022. Studies on exopolysaccharide production from Aureobasidium pullulans spi 10 and its applimineral as a green inhibitor for corrosion mitigation. J. Appl. Biol. Biotechnol. 10: 34-43.  https://doi.org/10.7324/JABB.2022.100306
  9. Miao M, Ma Y, Jiang B, Huang C, Li X, Cui SW, Zhang T. 2014. Structural investigation of a neutral extracellular glucan from Lactobacillus reuteri SK24.003. Carbohydr. Polym. 106: 384-392.  https://doi.org/10.1016/j.carbpol.2014.01.047
  10. Vaishnav AM. 2017. Bacterial Exopolysaccharides Production from Fruits and Potato Waste. Ph.D. Thesis, Gujarat University. 
  11. Pawar ST, Bhosale AA, Gawade TB, Nale TR. 2013. Isolation, screening and optimization of exopolysaccharide producing bacterium from saline soil. J. Microbiol. Biotechnol. Res. 3: 24-31. 
  12. Dave SR, Upadhyay KH, Vaishnav AM, Tipre DR. 2020. Exopolysaccharides from marine bacteria: production, recovery and appliminerals. Environ. Sustain. 3: 139-154.  https://doi.org/10.1007/s42398-020-00101-5
  13. Fontana C, Li S, Yang Z, Widmalm G. 2015. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr. Res. 402: 87-94.  https://doi.org/10.1016/j.carres.2014.09.003
  14. Shao LI, Wu Z, Zhang H, Chen W, Ai L, Guo B. 2014. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr. Polym. 107: 51-56.  https://doi.org/10.1016/j.carbpol.2014.02.037
  15. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54: 270-275.  https://doi.org/10.1016/j.ijbiomac.2012.12.037
  16. Mandal AK. 2015. Exploring physiology of an exopolysaccharide (EPS) producing facultatively oligotrophic bacterium Klebsiella pneumonia PB12 with special emphasis on structure-function analysis of EPS. Ph.D. Thesis, University of North Bengal. 
  17. Shukla PJ. 2018. Exopolysaccharides of Marine bacteria: Production and Characterization. Ph.D. Thesis, Bhavnagar University. 
  18. Suh HH, Kwon GS, Lee CH, Kim HS, Oh HM, Yoon BD. 1997. Characterization of bioflocculant produced by Bacillus sp. DP-152. J. Ferment. Bioeng. 84: 108-112.  https://doi.org/10.1016/S0922-338X(97)82537-8
  19. Yim JH, Kim SJ, Ahn SH, Lee HK. 2007. Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresour. Technol. 98: 361-367.  https://doi.org/10.1016/j.biortech.2005.12.021
  20. Liu J, Luo J, Sun Y, Ye H, Lu Z, Zeng X. 2010. A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin. Bioresour. Technol. 101: 6077-6083.  https://doi.org/10.1016/j.biortech.2010.03.019
  21. Wang L, Ma F, Qu Y, Sun D, Li A, Guo J, Yu B. 2011. Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World J. Microbiol. Biotechnol. 27: 2559-2565.  https://doi.org/10.1007/s11274-011-0726-2
  22. Ying Y, Fang MA, Qin W. 2006. Research on effect of flocculation morphology of bionocculant by Ca+2. J. Harbin Univ. Commer. Nat. Sci. Ed. 22: 41-43. 
  23. Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. 2016. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. Environ. Technol. 37: 1829-1842.  https://doi.org/10.1080/09593330.2015.1133717
  24. Bouchotroch S, Quesada E, del Moral A, Llamas I, Bejar V. 2001. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 51: 1625-1632.  https://doi.org/10.1099/00207713-51-5-1625
  25. Sajayan A, Kiran GS, Priyadharshini S, Poulose N, Selvin J. 2017. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environ. Pollut. 228: 118-127.  https://doi.org/10.1016/j.envpol.2017.05.020
  26. Kurane R, Toeda K, Takeda K, Suzuki T. 1986. Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric. Biol. Chem. 50: 2309-2313.  https://doi.org/10.1271/bbb1961.50.2309
  27. Finkenstadt VL, Cote GL, Willett JL. 2011. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides. Biotechnol. Lett. 33: 1093-1100.  https://doi.org/10.1007/s10529-011-0539-2
  28. Jayaraman A, Earthman JC, Wood TK. 1997. Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl. Microbiol. Biotechnol. 47: 62-68. https://doi.org/10.1007/s002530050889