Acknowledgement
The authors are thankful to excel industries limited for providing a laboratory facility for research work and financial support.
References
- Krishnamurthy M, Uthaya CJ, Thangavel M, Annadurai V, Rajendran R, Gurusamy A. 2019. Optimization, compositional analysis, and characterization of exopolysaccharides produced by multimetal resistant Bacillus cereus KMS3-1. Carbohydr. Polym. 227: 115369-115395. https://doi.org/10.1016/j.carbpol.2019.115369
- Nouha K, RD T, RY S. 2016. EPS producing microorganisms from municipal wastewater activated sludge. J. Petroleum Environ. Biotechnol. 7: 255-267.
- Kumar AS, Mody K, Jha B. 2007. Bacterial exopolysaccharides-a perception. J. Basic Microbiol. 47: 103-117. https://doi.org/10.1002/jobm.200610203
- Li WW, Zhou WZ, Zhang YZ, Wang J, Zhu XB. 2008. Flocculation behavior and mechanism of an exopolysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Bioresour. Technol. 99: 6893-6899. https://doi.org/10.1016/j.biortech.2008.01.050
- Qin G, Zhu L, Chen X, Wang PG, Zhang Y. 2007. Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiol. 153: 1566-1572. https://doi.org/10.1099/mic.0.2006/003327-0
- Muralidharan J, Jayachandran S. 2003. Physicochemical analyses of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolyticus. Process Biochem. 38: 841-847. https://doi.org/10.1016/S0032-9592(02)00021-3
- Ignatova-Ivanova T. 2017. Exopolysaccharides from Bacteria with Novel Applimineral, pp. 345-354, In Immunotherapy-Myths, Reality, Ideas, Future, IntechOpen.
- Gaikwad KM, Pansare GE, Madane MP, Mulay YR. 2022. Studies on exopolysaccharide production from Aureobasidium pullulans spi 10 and its applimineral as a green inhibitor for corrosion mitigation. J. Appl. Biol. Biotechnol. 10: 34-43. https://doi.org/10.7324/JABB.2022.100306
- Miao M, Ma Y, Jiang B, Huang C, Li X, Cui SW, Zhang T. 2014. Structural investigation of a neutral extracellular glucan from Lactobacillus reuteri SK24.003. Carbohydr. Polym. 106: 384-392. https://doi.org/10.1016/j.carbpol.2014.01.047
- Vaishnav AM. 2017. Bacterial Exopolysaccharides Production from Fruits and Potato Waste. Ph.D. Thesis, Gujarat University.
- Pawar ST, Bhosale AA, Gawade TB, Nale TR. 2013. Isolation, screening and optimization of exopolysaccharide producing bacterium from saline soil. J. Microbiol. Biotechnol. Res. 3: 24-31.
- Dave SR, Upadhyay KH, Vaishnav AM, Tipre DR. 2020. Exopolysaccharides from marine bacteria: production, recovery and appliminerals. Environ. Sustain. 3: 139-154. https://doi.org/10.1007/s42398-020-00101-5
- Fontana C, Li S, Yang Z, Widmalm G. 2015. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr. Res. 402: 87-94. https://doi.org/10.1016/j.carres.2014.09.003
- Shao LI, Wu Z, Zhang H, Chen W, Ai L, Guo B. 2014. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr. Polym. 107: 51-56. https://doi.org/10.1016/j.carbpol.2014.02.037
- Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. 2013. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54: 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
- Mandal AK. 2015. Exploring physiology of an exopolysaccharide (EPS) producing facultatively oligotrophic bacterium Klebsiella pneumonia PB12 with special emphasis on structure-function analysis of EPS. Ph.D. Thesis, University of North Bengal.
- Shukla PJ. 2018. Exopolysaccharides of Marine bacteria: Production and Characterization. Ph.D. Thesis, Bhavnagar University.
- Suh HH, Kwon GS, Lee CH, Kim HS, Oh HM, Yoon BD. 1997. Characterization of bioflocculant produced by Bacillus sp. DP-152. J. Ferment. Bioeng. 84: 108-112. https://doi.org/10.1016/S0922-338X(97)82537-8
- Yim JH, Kim SJ, Ahn SH, Lee HK. 2007. Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresour. Technol. 98: 361-367. https://doi.org/10.1016/j.biortech.2005.12.021
- Liu J, Luo J, Sun Y, Ye H, Lu Z, Zeng X. 2010. A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin. Bioresour. Technol. 101: 6077-6083. https://doi.org/10.1016/j.biortech.2010.03.019
- Wang L, Ma F, Qu Y, Sun D, Li A, Guo J, Yu B. 2011. Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World J. Microbiol. Biotechnol. 27: 2559-2565. https://doi.org/10.1007/s11274-011-0726-2
- Ying Y, Fang MA, Qin W. 2006. Research on effect of flocculation morphology of bionocculant by Ca+2. J. Harbin Univ. Commer. Nat. Sci. Ed. 22: 41-43.
- Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. 2016. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp. Environ. Technol. 37: 1829-1842. https://doi.org/10.1080/09593330.2015.1133717
- Bouchotroch S, Quesada E, del Moral A, Llamas I, Bejar V. 2001. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 51: 1625-1632. https://doi.org/10.1099/00207713-51-5-1625
- Sajayan A, Kiran GS, Priyadharshini S, Poulose N, Selvin J. 2017. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environ. Pollut. 228: 118-127. https://doi.org/10.1016/j.envpol.2017.05.020
- Kurane R, Toeda K, Takeda K, Suzuki T. 1986. Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric. Biol. Chem. 50: 2309-2313. https://doi.org/10.1271/bbb1961.50.2309
- Finkenstadt VL, Cote GL, Willett JL. 2011. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides. Biotechnol. Lett. 33: 1093-1100. https://doi.org/10.1007/s10529-011-0539-2
- Jayaraman A, Earthman JC, Wood TK. 1997. Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl. Microbiol. Biotechnol. 47: 62-68. https://doi.org/10.1007/s002530050889