DOI QR코드

DOI QR Code

Antimicrobial Activity of Phenolic-Rich Extracts from Mango Seed Kernel on Microorganisms

  • Dang Thi Thu Tam (Department of Food Technology, Institute of Food and Biotechnology, Can Tho University) ;
  • Ly Nguyen Binh (Department of Postharvest Technology, Institute of Food and Biotechnology, Can Tho University) ;
  • Tran Chi Nhan (Department of Postharvest Technology, Institute of Food and Biotechnology, Can Tho University) ;
  • Nguyen Bao Loc (Department of Food Technology, Institute of Food and Biotechnology, Can Tho University) ;
  • Nguyen Nhat Minh Phuong (Department of Food Technology, Institute of Food and Biotechnology, Can Tho University)
  • Received : 2023.10.12
  • Accepted : 2023.12.04
  • Published : 2023.12.28

Abstract

Replacing synthetic additives to preserve food products with natural antimicrobial compounds needs to be considered due to public health. In the present study, the phenolic extract from mango seed kernel (MSK) with the total phenolic content (TPC) value of 5300 ± 380 mg gallic acid equivalent (GAE)/L was used for evaluating the antimicrobial properties against five types of bacterial strains, including Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhimurium in vitro. This extract was also used for in situ method on the storage of Pangasianodon hypophthalmus fish fillets. The minimum inhibitory concentration (MIC) values for all tested strains were determined at an average concentration of 1325 mg GAE/L. Furthermore, the minimum bactericidal concentration (MBC) values of E. coli, S. aureus, and S. typhimurium were seen at 5300 mg GAE/L, while the extract did not show eliminations in the growth of the remaining strains. The bacterial inhibition speed of the extract illustrated that the concentration equal MIC value eliminated S. typhimurium growth after 24 h, the 4 times MIC value had remarkable effects on S. aureus growth after the 9 h of incubation, and 24 h of incubation for E. coli, L. monocytogenes, P. aeruginosa. Additionally, the MSK extract could inhibit the growth of P. aeruginosa on fish fillets in 4 days of storage. These results provide important evidence for the utilization of MSK as a natural source of antimicrobial agents in food products.

Keywords

Acknowledgement

The authors are grateful for the research-grant financed by MOET-Vietnam (B2022-TCT-12).

References

  1. UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). 2023. "Production of mangoes, mangosteens, and guavas in 2019. Available from http://www.Crops/Regions/World list/ProductionQuantity/Year(pick lists)", Accessed Jun. 22, 2023.
  2. Siacor FDC, Lobarbio CFY, Taboada EB. 2020. Optimizing the extraction of phenolic compounds with high antioxidant activity from mango seed kernel wastes using response surface methodology. Environ. Res. 42: 60-76.
  3. Tacias-Pascacio VG, Castaneda-Valbuena D, Fernandez-Lafuente R, Berenguer-Murcia A, Meza-Gordillo R, Gutierrez LF, et al. 2022. Phenolic compounds in mango fruit: a review. Int. J. Food Meas Charact. 16: 619-636.
  4. Castro-Vargas HI, Vivas DB, Barbosa JO, Medina SJM, Gutierrez FA, Parada-Alfonso F. 2019. Bioactive phenolic compounds from the agroindustrial waste of Colombian mango cultivars 'sugar mango' and 'tommy atkins'- An alternative for their use and valorization. Antioxidants 8: 41.
  5. Miceli A, Aleo A, Corona O, Sardina MT, Mammina C, Settanni L. 2014. Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Control 40: 157-164.
  6. Ribeiro SMR, Barbosa LCA, Queiroz JH, Knodler M, Schieber A. 2008. Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem. 110: 620-626.
  7. Dorta E, Lobo MG, Gonzalez M. 2012. Reutilization of mango byproducts: Study of the effect of extraction solvent and temperature on their antioxidant properties. J. Food Sci. 77: 80-88.
  8. Huynh NT, Smagghe G, Gonzales GB, Van Camp J, Raes K. 2014. Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves. J. Agric. Food Chem. 62: 7468-7476.
  9. Lim KJA, Cabajar AA, Lobarbio CFY, Taboada EB, Lacks DJ. 2019. Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol-water binary solvent systems. J. Food Sci. Technol. 56: 2536-2544.
  10. Wolfe K, Wu X, Liu RH. 2003. Antioxidant activity of apple peels. J. Agric. Food Chem. 51: 609-614.
  11. Phuong NNM, Trung LT, Vissenaekens H, Gonzales GB, Camp JV, Smagghe G, et al. 2019. In vitro antioxidant activity and phenolic profiles of tropical fruit by-products. Int. J. Food Sci. Technol. 54: 1169-1178.
  12. Das N, Goshwami D, Hasan S, Mahmud ZAl, Raihan SZ. 2016. Evaluation of antioxidant, antimicrobial and cytotoxic activities of Terminalia citrina leaves. J. Pharm. Res. 10: 8-15.
  13. Storz G, Christman MF, Sies H, Ames BN. 1987. Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 84: 8917-8921.
  14. Huang H, Garcia MM, Brooks BW, Nielsen K, Ng SP. 1999. Evaluation of culture enrichment procedures for use with Salmonella detection immunoassay. Int. J. Food Microbiol. 51: 85-94.
  15. Cheng W, Roth JR. 1994. Evidence for two NAD kinases in Salmonella typhimurium. J. Bacteriol. 176: 4260-4268.
  16. Islam MM, Islam MN, Sharifuzzaman FM, Rahman MA, Sharifuzzaman JU, Sarker EH, et al. 2014. Isolation and identification of Escherichia coli and Salmonella from poultry litter and feed. Int. J. Nat. Soc. Sci. 1: 1-7.
  17. Mazzola PG, Gava Mazzola P, Jozala AF, Celia De Lencastre Novaes L, Moriel P, Christina T, et al. 2009. Minimal inhibitory concentration (MIC) determination of disinfectant and/or sterilizing agents. Int. J. Pharm. Sci. 45: 241-248.
  18. Rodriguez Vaquero MJ, Tomassini Serravalle LR, Manca de Nadra MC, Strasser de Saad AM. 2010. Antioxidant capacity and antibacterial activity of phenolic compounds from argentinean herbs infusions. Food Control 21: 779-785.
  19. Tsuji BT, Yang JC, Forrest A, Kelchlin PA, Smith PF. 2008. In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus. J. Antimicrob. Chemother. 62: 156-160.
  20. Phuong NNM, Le TT, Van Camp J, Raes K. 2020. Evaluation of antimicrobial activity of rambutan (Nephelium lappaceum L.) peel extracts. Int. J. Food Microbiol. 321:108539.
  21. Taguri T, Tanaka T, Kouno I. 2004. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm Bull. 27: 1965-1969.
  22. Bernal-Mercado AT, Ayala-Zavala JF, Cruz-Valenzuela MR, Gonzalez-Aguilar GA, Nazzaro F, Fratianni F, et al. 2018. Using sensory evaluation to determine the highest acceptable concentration of mango seed extract as antibacterial and antioxidant agent in fresh-cut mango. Foods 7: 120.
  23. Cowan MM. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582.
  24. Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N. 2019. Plant antimicrobial polyphenols as potential natural food preservatives. J. Sci. Food Agric. 99: 1457-1474.
  25. Yosboonruang A, Ontawong A, Thapmamang J, Duangjai A. 2022. Antibacterial activity of Coffea robusta leaf extract against foodborne pathogens. J. Microbiol. Biotechnol. 32: 1003-1010.
  26. Vega-Vega V, Silva-Espinoza BA, Cruz-Valenzuela MR, Bernal-Mercado AT, Gonzalez-Aguilar GA, Ruiz-Cruz S, et al. 2013. Antimicrobial and antioxidant properties of byproduct extracts of mango fruit. J. Appl. Bot. Food Qual. 86: 205-211.
  27. Zafra Ciprian DI, Nevarez Moorillon GV, Soto Simental S, Guzman Pantoja LE, Lopez Hernandez LH, Santiago Castro JT, et al. 2023. Ataulfo mango (Mangifera indica L.) peel extract as a potential natural antioxidant in ground beef. Processes 11: 1772.
  28. Abkhoo J, Janhani S. 2017. Antibacterial effects of aqueous and ethanolic extracts of medicinal plants against pathogenic strains. Int. J. Infect. 4. https://doi.org/10.5812/iji.42624.
  29. Mehmet U, Emel E, Gulhan VU, Hulya SZ, Nilufer V. 2010. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem. Toxicol. 48: 3274-3280.
  30. Appiah T, Boakye YD, Agyare C. 2017. Antimicrobial activities and time-kill kinetics of extracts of selected Ghanaian mushrooms. Evid. Based Complement. Alternat. Med. 2017: 4534350.
  31. Engels C, Knodler M, Zhao YY, Carle R, Ganzle MG, Schieber A. 2009. Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. J. Agric. Food Chem. 57: 7712-7718.