DOI QR코드

DOI QR Code

Transaminases for Green Chemistry: Recent Progress and Future Prospects

  • Shreya Pandya (Department of Microbiology, Natubhai V. Patel College of Pure and Applied Sciences) ;
  • Akshaya Gupte (P. G. Department of Biosciences, Sardar Patel University, Satellite Campus)
  • 투고 : 2023.09.20
  • 심사 : 2023.12.04
  • 발행 : 2023.12.28

초록

Transaminase represents the most important biocatalysts used for the synthesis of chiral amines due to their stereoselectivity. They allow asymmetric synthesis with high yields and enantioselectivity from their corresponding ketones. Due to their environmentally friendly access for the preparation of chiral amines, they have attracted growing attention in recent times. Thus, the production of chiral compounds by transaminase catalysed reactions is considered as an important application in synthetic organic chemistry. Therefore, transaminase is considered to be an important enzyme in the pharmaceutical and chemical industries. ω-Transaminase holds great potential because of its wide substrate specificity thus making it a suitable enzyme to be used at an industrial scale. This review highlights the reaction mechanism, classification, substrate specificity, and biochemical properties. The review also showcases the application of ω-transaminase in organic chemistry with a focus on the production of active pharmaceutical ingredients (APIs).

키워드

참고문헌

  1. Needham DM. 1930. A quantitative study of succinic acid in muscle: glutamic and aspartic acids as precursors. Biochem. J. 24: 208-227.
  2. Braunstein AE, Kritzmann MG. 1937. Formation and breakdown of amino-acids by inter-molecular transfer of the amino group. Nature 140: 503-504.
  3. Taylor PP, Pantaleone DP, Senkpeil RF, Fotheringham IG. 1998. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol. 16: 412-418.
  4. Kelly SA, Mix S, Moody TS, Gilmore BF. 2020. Transaminases for industrial biocatalysis: novel enzyme discovery. Appl. Microbiol. Biotechnol. 104: 4781-4794.
  5. Shin JS, Kim BG. 2002. Exploring the active site of amine: pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: how the enzyme controls substrate specificity and stereoselectivity. J. Org. Chem. 67: 2848-2853.
  6. Park ES, Kim M, Shin JS. 2012. Molecular determinants for substrate selectivity of ω-transaminases. Appl. Microbiol. Biotechnol. 93: 2425-2435.
  7. Watanabe N, Sakabe K, Sakabe N, Higashi T, Sasaki K, Aibara S, et al. 1989. Crystal structure analysis of ω-amino acid: pyruvate aminotransferase with a newly developed Weissenberg camera and an imaging plate using synchrotron radiation. J. Biochem. 105: 1-3.
  8. Jang TH, Kim B, Park OK, Bae JY, Kim BG, Yun H, et al. 2010. Crystallization and preliminary X-ray crystallographic studies of omega-transaminase from Vibrio fluvialis JS17. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66: 923-925.
  9. Savile CK, Janey JM, Mundorff, EC, Moore JC, Tam S, Jarvis WR, et al. 2010. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329: 305-309.
  10. Svedendahl M, Branneby C, Lindberg L, Berglund P. 2010. Reversed enantiopreference of a ω-transaminase by a single-point mutation. ChemCatChem 2: 976-980.
  11. Cassimjee KE, Manta B, Himo F. 2015. A quantum chemical study of the ω-transaminase reaction mechanism. Org. Biomol. Chem. 13: 8453-8464.
  12. Mathew S, Yun H. 2012. ω -Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal. 2: 993-1001.
  13. Fuchs M, Farnberger JE, Kroutil W. 2015. The industrial age of biocatalytic transamination. Eur. J. Org. Chem. 2015(32): 6965-6982.
  14. Grishin NV, Phillips MA, Goldsmith EJ. 1995. Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci. 4: 1291-1304.
  15. Percudani R, Peracchi A. 2009. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinform. 10: 1-8.
  16. Mehta PK, Hale TI, Christen P. 1993. Aminotransferases: demonstration of homology and divisio into evolutionary subgroups. Eur. J. Biochem. 214: 549-561.
  17. Ward J, Wohlgemuth R. 2010. High-yield biocatalytic amination reactions in organic synthesis. Curr. Org. Chem. 14: 1914-1927.
  18. Kelefiotis-Stratidakis P, Tyrikos-Ergas T, Pavlidis IV. 2019. The challenge of using isopropylamine as an amine donor in transaminase catalysed reactions. Org. Biomol. Chem. 17: 1634-1642.
  19. Truppo MD, Rozzell JD, Turner NJ. 2010. Efficient production of enantiomerically pure chiral amines at concentrations of 50 g/l using transaminases. Org. Process Res. Dev. 14: 234-237.
  20. Patil MD, Grogan G, Bommarius A, Yun H. 2018. Recent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral amines. Catalysts 8: 254-279.
  21. Shin JS, Kim BG. 1997. Kinetic resolution of α-methylbenzylamine with ω-transaminase screened from soil microorganisms: Application of a biphasic system to overcome product inhibition. Biotechnol. Bioeng. 55: 348-358.
  22. Shin JS, Kim BG. 1999. Asymmetric synthesis of chiral amines with ω-transaminase. Biotechnol. Bioeng. 65: 206-211.
  23. Yun H, Lim S, Cho B, Kim B. 2004. ω-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of β-amino acids and amines. Appl. Environ. Microbiol. 70: 2529-2534.
  24. Kim J, Kyung D, Yun H, Cho BK, Seo JH, Cha M, et al. 2007. Cloning and characterization of a novel β-transaminase from Mesorhizobium sp. Strain LUK: a new biocatalyst for the synthesis of enantiomerically pure β-amino acids. Appl. Environ. Microbiol. 73: 1772-1782.
  25. Hanson RL, Davis BL, Chen Y, Goldberg SL, Parker WL, Tully TP, et al. 2008. Preparation of (R) -amines from racemic amines with an (S) -amine transaminase from Bacillus megaterium. Adv. Synth. Catal. 350: 1367-1375.
  26. Iwasaki A, Yamada Y, Ikenaka Y, Hasegawa J. 2003. Microbial synthesis of (R)-and (S)-3, 4-dimethoxyamphetamines through stereoselective transamination. Biotechnol. Lett. 25: 1843-1846.
  27. Pavkov-Keller T, Strohmeier GA, Diepold M, Peeters W, Smeets N, Schurmann M, et al. 2016. Discovery and structural characterisation of new fold type IV-transaminases exemplify the diversity of this enzyme fold. Sci. Rep. 6: 38183.
  28. Gord Noshahri N, Fooladi J, Syldatk C, Engel U, Heravi MM, Zare Mehrjerdi M, et al. 2019. Screening and comparative characterization of microorganisms from Iranian soil samples showing ω-transaminase activity toward a plethora of substrates. Catalysts 9: 874-887.
  29. Kaulmann U, Smithies K, Smith ME, Hailes HC, Ward JM. 2007. Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme Microb. Technol. 41: 628-637.
  30. Park E, Kim M, Shin JS. 2010. One-pot conversion of l-threonine into l-homoalanine: biocatalytic production of an unnatural amino acid from a natural one. Adv. Synth. Catal. 352: 3391-3398.
  31. Hohne M, Bornscheuer UT. 2009. Biocatalytic routes to optically active amines. ChemCatChem 1: 42-51.
  32. Hohne M, Schatzle S, Jochens H, Robins K, Bornscheuer UT. 2010. Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. 6: 807-813.
  33. Sayer C, Martinez-Torres RJ, Richter N, Isupov MN, Hailes HC, Littlechild JA, et al. 2014. The substrate specificity, enantioselectivity and structure of the (R)-selective amine: pyruvate transaminase from Nectria haematococca. FEBS J. 281: 2240-2253.
  34. Jiang J, Chen X, Zhang D, Wu Q, Zhu D. 2015. Characterization of (R)-selective amine transaminases identified by in silico motif sequence blast. Appl. Microbiol. Biotechnol. 99: 2613-2621.
  35. Iglesias C, Paola P, Sonia RG. 2017. Identification, expression and characterization of an R-ω-transaminase from Capronia semiimmersa. Appl. Microbiol. Biotechnol. 101: 5677-5687.
  36. Patel T, Chaudhari HG, Prajapati V, Patel S, Mehta V, Soni N. 2022. A brief account on enzyme mining using metagenomic approach. Front. Syst. Biol. 2: 1046230.
  37. Lema NK, Gemeda MT, Woldesemayat AA. 2023. Recent advances in metagenomic approaches, applications, and challenge. Curr. Microbiol. 80: 347.
  38. Baud D, Jeffries JW, Moody TS, Ward JM, Hailes HC. 2017. A metagenomics approach for new biocatalyst discovery: application to transaminases and the synthesis of allylic amines. Green Chem. 19: 1134-1143.
  39. Ferrandi EE, Previdi A, Bassanini I, Riva S, Peng X, Monti D. 2017. Novel thermostable amine transferases from hot spring metagenomes. Appl. Microbiol. Biotechnol. 101: 4963-4979.
  40. Leipold L, Dobrijevic D, Jeffries JW, Bawn M, Moody TS, Ward JM, et al. 2019. The identification and use of robust transaminases from a domestic drain metagenome. Green Chem. 21: 75-86.
  41. Kelly SA, Skvortsov T, Magill D, Quinn DJ, McGrath JW, Allen CC, et al. 2018. Characterization of a novel ω-transaminase from a Triassic salt mine metagenome. Biochem. Biophys. Res. Commun. 503: 2936-2942.
  42. Pawar SV, Hallam SJ, Yadav VG. 2018. Metagenomic discovery of a novel transaminase for valorization of monoaromatic compounds. RSC Adv. 8: 22490-22497.
  43. Marquez SL, Blamey JM. 2019. Isolation and partial characterization of a new moderate thermophilic Albidovulum sp. SLM16 with transaminase activity from Deception Island, Antarctica. Biol. Res. 52: 5.
  44. Ito N, Kawano S, Hasegawa J, Yasohara Y. 2011. Purification and characterization of a novel (S)-enantioselective transaminase from Pseudomonas fluorescens KNK08-18 for the synthesis of optically active amines. Biosci. Biotechnol. Biochem. 75: 2093-2098.
  45. Wu HL, Zhang JD, Zhang CF, Fan XJ, Chang HH, Wei WL. 2017. Characterization of four new distinct ω-transaminases from Pseudomonas putida NBRC 14164 for kinetic resolution of racemic amines and amino alcohols. Appl. Biochem. Biotechnol. 181: 972-985.
  46. Ferrandi EE, Bassanini I, Sechi B, Vanoni M, Tessaro D, Guobergsdottir SR, et al. 2020. Discovery and characterization of a novel thermostable β-amino acid transaminase from a Meiothermus strain isolated in an icelandic hot spring. Biotechnol. J. 15: 2000125.
  47. Hwang BY, Ko SH, Park HY, Seo JH, Lee BS, Kim BG. 2008. Identification of ω-aminotransferase from Caulobacter crescentus and site directed mutagenesis to broaden substrate specificity. J. Microbiol. Biotechnol. 18: 48-54.
  48. Bea HS, Park HJ, Lee SH, Yun H. 2011. Kinetic resolution of aromatic β-amino acids by ω-transaminase. ChemComm. 47: 5894-5896.
  49. Kelly SA, Megaw J, Caswell J, Scott CJ, Allen CC, Moody TS, et al. 2017. Isolation and characterisation of a halotolerant ω-transaminase from a triassic period salt mine and its application to biocatalysis. ChemistrySelect. 2: 9783-9791.
  50. Jiang J, Chen X, Feng J, Wu Q, Zhu D. 2014. Substrate profile of an ω-transaminase from Burkholderia vietnamiensis and its potential for the production of optically pure amines and unnatural amino acids. J. Mol. Catal. B Enzym. 100: 32-39.
  51. Cerioli L, Planchestainer M, Cassidy J, Tessaro D, Paradisi F. 2015. Characterization of a novel amine transaminase from Halomonas elongata. J. Mol. Catal. B Enzym. 120: 141-150.
  52. Slabu I, Galman JL, Weise NJ, Lloyd RC, Turner NJ. 2016. Putrescine transaminases for the synthesis of saturated nitrogen heterocycles from polyamines. ChemCatChem 8: 1038-1042.
  53. Kelly SA, Pohle S, Wharry S, Mix S, Allen CCR, Moody TS, et al. 2018. Application of ω-transaminases in the pharmaceutical industry. Chem. Rev. 118: 349-367.
  54. Li X, Gui P, Yang R, Lu Z, Wang X, Luo C, et al. 2023. Identification and characterization of a novel thermostable transaminase (TATP) from Thermorudis peleae. Biocatal. Biotransform. doi.org/10.1080/10242422.2023.2241601.
  55. Wang C, Tang K, Dai Y, Jia H, Li Y, Gao Z, et al. 2021. Identification, characterization, and site-specific mutagenesis of a thermostable ω-transaminase from Chloroflexi bacterium. ACS Omega 6: 17058-17070.
  56. Tang XL, Zhang NN, Ye GY, Zheng YG. 2019. Efficient biosynthesis of (R)-3-amino-1-butanol by a novel (R)-selective transaminase from Actinobacteria sp. J. Biotechnol. 295: 49-54.
  57. Coscolin C, Katzke N, Garcia-Moyano A, Navarro-Fernandez J, Almendral D, Martinez-Martinez M, et al. 2019. Bioprospecting reveals class III ω-transaminases converting bulky ketones and environmentally relevant polyamines. Appl. Environ. Microbiol. 85: e02404-18.
  58. Statkevicius R, Vaitekunas J, Stanislauskiene R, Meskys R. 2023. Metagenomic type IV aminotransferases active toward (R)-methylbenzylamine. Catalysts 13: 587.
  59. Chowdhury R, Maranas CD. 2020. From directed evolution to computational enzyme engineering-a review. AIChE J. 66: e16847.
  60. Trovao M, Schuler LM, Machado A, Bombo G, Navalho S, Barros A, et al. 2022. Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. Mar. Drugs 20: 440.
  61. Yano T, Oue S, Kagamiyama H. 1998. Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. USA 95: 5511-5515.
  62. Martin AR, DiSanto R, Plotnikov I, Kamat S, Shonnard D, Pannuri S. 2007. Improved activity and thermostability of (S)-aminotransferase by error-prone polymerase chain reaction for the production of a chiral amine. Biochem. Eng. J. 37: 246-255.
  63. Wang CN, Qiu S, Fan FF, Lyu CJ, Hu S, Zhao WR, et al. 2023. Enhancing the organic solvent resistance of ω-amine transaminase for enantioselective synthesis of (R)-(+)-1(1-naphthyl)-ethylamine. Biotechnol. J. 18: 2300120.
  64. Kumar A, Singh S. 2013. Directed evolution: tailoring biocatalysts for industrial applications. Crit. Rev. Biotechnol. 33: 365-378.
  65. Cho BK, Park HY, Seo JH, Kim J, Kang TJ, Lee BS, et al. 2008. Redesigning the substrate specificity of ω-aminotransferase for the kinetic resolution of aliphatic chiral amines. Biotechnol. Bioeng. 99: 275-284.
  66. Nobili A, Steffen-Munsberg F, Kohls H, Trentin I, Schulzke C, Hohne M, et al. 2015. Engineering the active site of the amine transaminase from Vibrio fluvialis for the asymmetric synthesis of aryl-alkyl amines and amino alcohols. ChemCatChem 7: 757-760.
  67. Park ES, Park SR, Han SW, Dong JY, Shin JS. 2014. Structural determinants for the non-canonical substrate specificity of the ω-transaminase from Paracoccus denitrificans. Adv. Synth. Catal. 356: 212-220.
  68. Han SW, Park ES, Dong JY, Shin JS. 2015. Expanding substrate specificity of ω-transaminase by rational remodeling of a large substrate-binding pocket. Adv. Synth. Catal. 357: 2712-2720.
  69. Humble MS, Cassimjee KE, Hakansson M, Kimbung YR, Walse B, Abedi V, et al. 2012. Crystal structures of the Chromobacterium violaceum ω-transaminase reveal major structural rearrangements upon binding of coenzyme PLP. FEBS J. 279: 779-792.
  70. Cassimjee KE, Humble MS, Land H, Abedi V, Berglund P. 2012. Chromobacterium violaceum ω-transaminase variant Trp60Cys shows increased specificity for (S)-1-phenylethylamine and 4?-substituted acetophenones, and follows Swain-Lupton parameterisation. Org. Biomol. Chem. 10: 5466-5470.
  71. Shin JS, Kim BG. 2001. Comparison of the ω-transaminases from different microorganisms and application to production of chiral amines. Biosci. Biotechnol. Biochem. 65: 1782-1788.
  72. Yun H, Hwang BY, Lee JH, Kim BG. 2005. Use of enrichment culture for directed evolution of the Vibrio fluvialis JS17 ω-transaminase, which is resistant to product inhibition by aliphatic ketones. Appl. Environ. Microbiol. 71: 4220-4224.
  73. Schatzle S, Hohne M, Redestad E, Robins K, Bornscheuer UT. 2009. Rapid and sensitive kinetic assay for characterization of ω-transaminases. Anal. Chem. 81: 8244-8248.
  74. Truppo MD, Turner NJ. 2010. Micro-scale process development of transaminase catalysed reactions. Org. Biomol.Chem. 8: 1280-1283.
  75. Baud D, Ladkau N, Moody TS, Ward JM, Hailes HC. 2015. A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase. ChemComm. 51: 17225-17228.
  76. Hwang BY, Kim BG. 2004. High-throughput screening method for the identification of active and enantioselective ω-transaminases. Enzyme Microb. Technol. 34: 429-436.
  77. Chen M, Rong L, Chen X. 2015. A simple and sensitive detection of glutamic-pyruvic transaminase activity based on fluorescence quenching of bovine serum albumin. RSC Adv. 5: 103557-103562.
  78. Hopwood J, Truppo MD, Turner, NJ, Lloyd RC. 2011. A fast and sensitive assay for measuring the activity and enantioselectivity of transaminases. ChemComm. 47: 773-775.
  79. Barber JE, Damry AM, Calderini GF, Walton CJ, Chica RA. 2014. Continuous colorimetric screening assay for detection of d-amino acid aminotransferase mutants displaying altered substrate specificity. Anal. Biochem. 463: 23-30.
  80. Willies SC, Galman JL, Slabu I, Turner NJ. 2016. A stereospecific solid-phase screening assay for colonies expressing both (R)-and (S)-selective ω-aminotransferases. Philos. Trans. Royal Soc. A 374: 20150084.
  81. Weib MS, Pavlidis IV, Vickers C, Hohne M, Bornscheuer UT. 2014. Glycine oxidase based high-throughput solid-phase assay for substrate profiling and directed evolution of (R)-and (S)-selective amine transaminases. Anal. Chem. 86: 11847-11853.
  82. Lambhiya S, Patel G, Banerjee UC. 2021. Immobilization of transaminase from Bacillus licheniformis on copper phosphate nanoflowers and its potential application in the kinetic resolution of RS-α-methyl benzyl amine. Bioresour. Bioprocess 8: 126.
  83. Bommer M, Ward JM. 2013. A 1-step microplate method for assessing the substrate range of l-α-amino acid aminotransferase. Enzyme Microb. Technol. 52: 218-225.
  84. Xiang C, Ao YF, Hohne M, Bornscheuer UT. 2022. Shifting the pH optima of (R)-selective transaminases by protein engineering. Int. J. Mol. Sci. 23: 15347.
  85. Green AP, Turner NJ, O'Reilly E. 2014. Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening. Angew. Chem. Int. Ed. 53: 10714-10717.
  86. Bommer M, Ward JM. 2016. Micromolar colorimetric detection of 2-hydroxy ketones with the water-soluble tetrazolium WST-1. Anal. Biochem. 493: 8-10.
  87. Scheidt T, Land H, Anderson M, Chen Y, Berglund P, Yi D, et al. 2015. Fluorescence-based kinetic assay for high-throughput discovery and engineering of stereoselective ω-transaminases. Adv. Synth. Catal. 357: 1721-1731
  88. Wang G, Jiang Z, Xiao Q, Jiang C. 2022. Visible spectrophotometric assay for characterization of ω-transaminases. Anal. Biochem. 658: 114933.
  89. Slabu I, Galman JL, Lloyd RC, Turner NJ. 2017. Discovery, engineering, and synthetic application of transaminase biocatalysts. ACS Catal. 7: 8263-8284.
  90. Park ES, Shin JS. 2013. ω-Transaminase from Ochrobactrum anthropi is devoid of substrate and product inhibitions. Appl. Environ. Microbiol. 79: 4141-4144.
  91. Constable DJ, Dunn PJ, Hayler JD, Humphrey GR, Leazer Jr JL, Linderman RJ, et al. 2007. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem. 9: 411-420.
  92. Lalonde J. 2016. Highly engineered biocatalysts for efficient small molecule pharmaceutical synthesis. Curr. Opin. Biotechnol. 42: 152-158.
  93. Yun H, Kim BG. 2008. Asymmetric synthesis of (S)-α-methylbenzylamine by recombinant Escherichia coli co-expressing omega-transaminase and acetolactate synthase. Biosci. Biotechnol. Biochem. 72: 3030-3033.
  94. Heckmann CM, Paul CE. 2023. Enantio-complementary synthesis of 2-substituted pyrrolidines and piperidines via transaminase-triggered cyclizations. JACS Au 3: 1642-1649.
  95. Busto E, Simon RC, Grischek B, Gotor-Fernandez V, Kroutil W. 2014. Cutting short the asymmetric synthesis of the ramatroban precursor by employing ω-transaminases. Adv. Synth. Catal. 356: 1937-1942.
  96. Genz M, Melse O, Schmidt S, Vickers C, Dorr M, Van Den Bergh T, et al. 2016. Engineering the amine transaminase from Vibrio fluvialis towards branched-chain substrates. ChemCatChem 8: 3199-3202.
  97. Costa IC, de Souza ROM, Bornscheuer UT. 2017. Asymmetric synthesis of serinol-monoesters catalyzed by amine transaminases. Tetrahedron: Asymmetry 28: 1183-1187.
  98. Richter N, Simon RC, Kroutil W, Ward JM, Hailes HC. 2014. Synthesis of pharmaceutically relevant 17-α-amino steroids using a ω-transaminase. ChemComm. 50: 6098-6100.
  99. Cho BK, Seo JH, Kang TW, Kim BG. 2003. Asymmetric synthesis of l-homophenylalanine by equilibrium-shift using recombinant aromatic l-amino acid transaminase. Biotechnol. Bioeng. 83: 226-234.
  100. Rios-Solis L, Bayir N, Halim M, Du C, Ward JM, Baganz F, et al. 2013. Non-linear kinetic modelling of reversible bioconversions: Application to the transaminase catalyzed synthesis of chiral amino-alcohols. Biochem. Eng. J. 73: 38-48.
  101. Meng Q, Capra N, Palacio CM, Lanfranchi E, Otzen M, Van Schie LZ, et al. 2020. Robust ω-transaminases by computational stabilization of the subunit interface. ACS Catal. 10: 2915-2928.
  102. Dong L, Meng Q, Ramirez-Palacios C, Wijma HJ, Marrink SJ, Janssen DB. 2020. Asymmetric synthesis of optically pure aliphatic amines with an engineered robust ω-transaminase. Catalysts 10: 1310.
  103. Koszelewski D, Clay D, Rozzell D, Kroutil W. 2009. Deracemisation of α-chiral primary amines by a one-pot, two-step cascade reaction catalysed by ω-transaminases. Eur. J. Org. Chem. 2009: 2289-2292.
  104. Kroutil W, Fischereder EM, Fuchs CS, Lechner H, Mutti FG, Pressnitz D, et al. 2013. Asymmetric preparation of prim-, sec-, and tert-amines employing selected biocatalysts. Org. Process Res. Dev. 17: 751-759.
  105. Shin G, Mathew S, Shon M, Kim BG, Yun H. 2013. One-pot one-step deracemization of amines using ω-transaminases. ChemComm. 49: 8629-8631.
  106. Fuchs M, Tauber K, Sattler J, Lechner H, Pfeffer J, Kroutil W, et al. 2012. Amination of benzylic acid and cinnamic alcohols via a bio catalytic, aerobic, oxidation transamination cascade. RSC Adv. 2: 6262-6265.
  107. Palacio CM, Crismaru CG, Bartsch S, Navickas V, Ditrich K, Breuer M, et al. 2016. Enzymatic network for production of ether amines from alcohols. Biotechnol. Bioeng. 113: 1853-1861.
  108. O'Reilly E, Iglesias C, Ghislieri D, Hopwood J, Galman JL, Lloyd RC, et al. 2014. A regio-and stereoselective ω-transaminase/monoamine oxidase cascade for the synthesis of chiral 2, 5-disubstituted pyrrolidines. Angew. Chem. 126: 2479-2482.
  109. Smith ME, Chen BH, Hibbert EG, Kaulmann U, Smithies K, Galman JL, et al. 2010. A multidisciplinary approach toward the rapid and preparative-scale biocatalytic synthesis of chiral amino alcohols: a concise transketolase-/ω-transaminase-mediated synthesis of (2 S, 3 S)-2-aminopentane-1, 3-diol. Org. Process Res. Dev. 14: 99-107.
  110. Shin JS, Yun H, Jang JW, Park I, Kim BG. 2003. Purification, characterization, and molecular cloning of a novel amine: pyruvate transaminase from Vibrio fluvialis JS17. Appl. Microbiol. Biotechnol. 61: 463-471.
  111. Iwasaki A, Matsumoto K, Hasegawa J, Yasohara Y. 2012. A novel transaminase, (R)-amine: pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning. Appl. Microbiol. Biotechnol. 93: 1563-1573.