DOI QR코드

DOI QR Code

Draft Genome of an AmpC-β-Lactamase Producing Serratia marcescens Isolate from Fresh farm Tomatoes in South Africa

  • Maike Claussen (Discipline of Microbiology, University of KwaZulu-Natal) ;
  • Stefan Schmidt (Discipline of Microbiology, University of KwaZulu-Natal)
  • Received : 2023.07.14
  • Accepted : 2023.08.11
  • Published : 2023.09.28

Abstract

Here we report essential features of the draft genome of an AmpC-β-lactamase-producing bacterial isolate obtained from farm tomatoes in South Africa. The isolate designated strain Tom1 featured a genome of 4950426 bp with a G+C% of 59.83. It was identified as Serratia marcescens by ribosomal multilocus sequence typing (rMLST), digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and phylogenetic analysis using reference genomes. Its genome encoded an AmpC-β-lactamase (blaSST-1), an efflux pump providing tetracycline resistance (tet(41)), and an aminoglycoside acetyltransferase (aac(6')-Ic). Additionally, genes encoding proteins involved in prodigiosin biosynthesis and associated with adherence, biofilm formation, virulence, and pathogenicity were detected.

Keywords

Acknowledgement

This research was supported by the National research foundation (NRF) of South Africa (134128, SS).

References

  1. Herforth A, Arimond M, Alvarez-Sanchez C, Coates J, Christianson K, Muehlhoff E. 2019. A global review of food-based dietary guidelines. Adv. Nutr. 10: 590-605.  https://doi.org/10.1093/advances/nmy130
  2. Holzel CS, Tetens JL, Schwaiger K. 2018. Unraveling the role of vegetables in spreading antimicrobial-resistant bacteria: A need for quantitative risk assessment. Foodborne Pathog. Dis. 15: 671-688.  https://doi.org/10.1089/fpd.2018.2501
  3. Mahlen SD. 2011. Serratia infections: from military experiments to current practice. Clin. Microbiol. Rev. 24: 755-791.  https://doi.org/10.1128/CMR.00017-11
  4. Matteoli FP, Podrosa-Silva F, Dutra-Silva L, Giachini AJ. 2021. The global population structure and beta-lactamase repertoire of the opportunistic pathogen Serratia marcescens. Genomics 113: 3523-3532.  https://doi.org/10.1016/j.ygeno.2021.08.009
  5. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, et al. 2023. Introducing the bacterial and viral bioinformatics resource center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 51: D678-D689. 
  6. Gant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen C, et al. 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 51: W484-W492. 
  7. Meier-Kolthoff JP, Sarda Carbasse J, Peinado-Olarte RL, Goker M. 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acid Res. 50: D801-D807.  https://doi.org/10.1093/nar/gkab902
  8. Jeong S, Kim I, Kim BE, Jeong MI, Oh KK, Cho GS, et al. 2023. Identification and characterization of antibiotic-resistant, Gram-negative bacteria isolated from Korean fresh produce and agricultural environment. Microorganisms 11: 1241. 
  9. Lazarus JE, Warr AR, Westervelt KA, Hooper DC, Waldor MK. 2021. A genome-scale antibiotic screen in Serratia marcescens identifies YdgH as a conserved modifier of cephalosporin and detergent susceptibility. Antimicrob. Agents Chemother. 65: e00786-21. 
  10. Ji K, Kim YT. 2019. Antimicrobial activity of prodigiosin from Serratia sp. PDGS120915 against intestinal pathogenic bacteria. Microbiol. Biotechnol. Lett. 47: 459-464. https://doi.org/10.4014/mbl.1901.01006