과제정보
This work was financially supported by National Higher Education, Science, Research and Innovation Policy Council, Thaksin University (Research project grant no. TSU-65A105000021) Fiscal Year 2022.
참고문헌
- Penkhrue W, Jendrossek D, Khanongnuch C, Pathom-Aree W, Aizawa T, Behrens RL, et al. 2020. Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS One 15: e0230443.
- Sukruansuwan V, Napathorn SC. 2018. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol. Biofuels 11: 202.
- Loo CY, Sudesh K. 2007. Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malaysian Polym. J. 2: 31-57.
- Tan G-YA, Chen C-L, Li L, Ge L, Wang L, Razaad IMN, et al. 2014. A review: Start a research on biopolymer polyhydroxyalkanoate (PHA). Polymers 6: 706-754. https://doi.org/10.3390/polym6030706
- Andhalkar VV, Ahorsu R, Dominguez de Maria P, Winterburn J, Medina F, Constanti M. 2022. Facts and challenges : Valorization of Lignocellulose by producing polyhydroxyalkanoates under circular bioeconomy premises. ACS Sustain. Chem. Eng. 10: 16459-16475. https://doi.org/10.1021/acssuschemeng.2c04925
- Tsuge T, Hyakutake M, Mizuno K. 2015. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 99: 6231-6240. https://doi.org/10.1007/s00253-015-6777-9
- Rehm BH. 2010. Bacterial polymers: biosynthesis, modifications and applications. Nat. Rev. Microbiol. 8: 578-592. https://doi.org/10.1038/nrmicro2354
- Biedendieck R, Knuuti T, Moore SJ, Jahn D. 2021. The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl. Microbiol. Biotechnol. 105: 5719-5737. https://doi.org/10.1007/s00253-021-11424-6
- Rodriguez-Contreras A, Koller M, Miranda-de Sousa Dias M, Calafell-Monfort M, Braunegg G, Marques-Calvo MS. 2013. High production of poly (3-hydroxybutyrate) from a wild Bacillus megaterium Bolivian strain. J. Appl. Microbiol. 114: 1378-1387. https://doi.org/10.1111/jam.12151
- Gouda MK, Swellam AE, Omar SH. 2001. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol. Res. 156: 201-207. https://doi.org/10.1078/0944-5013-00104
- Wang K, Zhang R. 2021. Production of polyhydroxyalkanoates (PHA) by Haloferax mediterranei from food waste derived nutrients for biodegradable plastic applications. J. Microbiol. Biotechnol. 31: 338-347. https://doi.org/10.4014/jmb.2008.08057
- Suwannasing W, Imai T, Kaewkannetra P. 2015. Potential utilization of pineapple waste streams for polyhydroxyalkanoates (PHAs) production via batch fermentation. J. Water Environ. Technol. 13: 335-347. https://doi.org/10.2965/jwet.2015.335
- Obruca S, Benesova P, Marsalek L, Marova I. 2015. Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q. 29: 135-144. https://doi.org/10.15255/CABEQ.2014.2253
- Li J, Yang Z, Zhang K, Liu M, Liu D, Yan X, Si M, Shi Y. 2021. Valorizing waste liquor from dilute acid pretreatment of lignocellulosic biomass by Bacillus megaterium B-10. Ind. Crops Prod. 161: 113160.
- Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N. 2009. Inexpensive fed-batch cultivation for high poly (3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J. Biosci. Bioeng. 107: 240-245. https://doi.org/10.1016/j.jbiosc.2008.10.006
- Nasir K, Batool R, Jamil N. 2022. Scale-up studies for polyhydroxyalkanoate and halocin production by Halomonas sp. as potential biomedical materials. J. Biom. Biomater. Biomed. Eng. 56: 49-60. https://doi.org/10.4028/p-yqf2wv
- Tian J, Sinskey AJ, Stubbe J. 2005. Kinetic studies of polyhydroxybutyrate granule formation in Wautersia eutropha H16 by transmission electron microscopy. J. Bacteriol. 187: 3814-3824. https://doi.org/10.1128/JB.187.11.3814-3824.2005
- Kannan L, Wheeler WC. 2012. Maximum parsimony on phylogenetic networks. Algorithms Mol. Biol. 7: 9.
- Halket G, Dinsdale A, Logan NA. 2010. Evaluation of the VITEK2 BCL card for identification of Bacillus species and other aerobic endosporeformers. Lett. Appl. Microbiol. 50: 120-126. https://doi.org/10.1111/j.1472-765X.2009.02765.x
- Berekaa MM. 2012. Genotypic detection of polyhydroxyalkanoate-producing bacilli and characterization of phaC synthase of Bacillus sp. SW1-2. Life Sci. J. 4: 9.
- Chanasit W, Hodgson B, Sudesh K, Umsakul K. 2016. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Biosci. Biotechnol. Biochem. 80: 1440-1450. https://doi.org/10.1080/09168451.2016.1158628
- de Souza Hassemer G, Colet R, de Melo RN, Fischer B, Lin Y-H, Junges A, et al. 2021. Production of poly(3-hydroxybutyrate) (P (3HB)) from different agroindustry byproducts by Bacillus megaterium. Biointerface Res. Appl. Chem. 11: 14278-14289. https://doi.org/10.33263/BRIAC116.1427814289
- Hamdy SM, Danial AW, Gad El-Rab SM, Shoreit AA, Hesham AE-L. 2022. Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiol. 22: 183.
- Wong Y-M, Brigham CJ, Rha C, Sinskey AJ, Sudesh K. 2012. Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour. Technol. 121: 320-327. https://doi.org/10.1016/j.biortech.2012.07.015
- de Oliveira Schmidt VK, Santos EFd, de Oliveira D, Ayub MAZ, Cesca K, Cortivo PRD, et al. 2022. Production of polyhydroxyalkanoates by Bacillus megaterium: Prospecting on rice hull and residual glycerol potential. Biomass 2: 412-425. https://doi.org/10.3390/biomass2040026
- Sun Z, Ramsay JA, Guay M, Ramsay BA. 2007. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 74: 69-77. https://doi.org/10.1007/s00253-006-0655-4
- Vega-Castro O, Contreras-Calderon J, Leon E, Segura A, Arias M, Perez L, et al. 2016. Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. J. Biotechnol. 231: 232-238. https://doi.org/10.1016/j.jbiotec.2016.06.018
- Chanasit W, Sueree L, Hodgson B, Umsakul K. 2014. The production of poly (3-hydroxybutyrate)[P (3HB)] by a newly isolated Bacillus sp. ST1C using liquid waste from biodiesel production. Annal. Microbiol. 64: 1157-1166. https://doi.org/10.1007/s13213-013-0755-1
- Brandt-Talbot A, Gschwend FJ, Fennell PS, Lammens TM, Tan B, Weale J, et al. 2017. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem. 19: 3078-3102. https://doi.org/10.1039/C7GC00705A
- Maarof NA. 2014. Production of poly(3-hydroxybutyrate) from pineapple waste. UMP. http://umpir.ump.edu.my/id/eprint/9158.
- Palachum W, Choorit W, Chisti Y. 2021. Nutritionally enhanced probioticated whole pineapple juice. Fermentation 7: 178.
- Raphael BB, Adelaja O. 2020. Production of poly-β-hydroxybutyric acid (PHB) by Bacillus cereus on pineapple peels. GSC Adv. Res. Rev. 4: 024-030. https://doi.org/10.30574/gscarr.2020.4.1.0055
- dos Santos AJ, Oliveira Dalla Valentina LV, Hidalgo Schulz AA, Tomaz Duarte MA. 2017. From obtaining to degradation of PHB: material properties. Part I. Ingenieria y ciencia. 13: 269-298. https://doi.org/10.17230/ingciencia.13.26.10
- Hernandez-Nunez E, Martinez-Gutierrez CA, Lopez-Cortes A, Aguirre-Macedo ML, Tabasco-Novelo C, Gonzalez-Diaz MO, et al. 2019. Physico-chemical characterization of poly (3-hydroxybutyrate) produced by Halomonas salina, isolated from a hypersaline microbial mat. J. Polym. Environ. 27: 1105-1111. https://doi.org/10.1007/s10924-019-01417-y