Acknowledgement
This study was financially supported by the Anhui Educational Committee Foundation (KJ2020A0113), P.R. China.
References
- Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, et al. 2017. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42: 111-129. https://doi.org/10.1016/j.tibs.2016.09.010
- Mukherjee A, Schroeder CM. 2015. Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr. Opin. Biotechnol. 31: 16-23. https://doi.org/10.1016/j.copbio.2014.07.010
- Buckley AM, Petersen J, Roe AJ, Douce GR, Christie JM. 2015. LOV-based reporters for fluorescence imaging. Curr. Opin. Chem. Biol. 27: 39-45. https://doi.org/10.1016/j.cbpa.2015.05.011
- Wingen M, Jaeger KE, Gensch T, Drepper T. 2017. Novel thermostable flavin-binding fluorescent proteins from thermophilic organisms. Photochem. Photobiol. 93: 849-856. https://doi.org/10.1111/php.12740
- Mukherjee A, Weyant KB, Agrawal U, Walker J, Cann IK, Schroeder CM. 2015. Engineering and characterization of new LOV-based fluorescent proteins from Chlamydomonas reinhardtii and Vaucheria frigida. ACS Synth. Biol. 4: 371-377. https://doi.org/10.1021/sb500237x
- Close DW, Paul CD, Langan PS, Wilce MC, Traore DA, Halfmann R, et al. 2015. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering. Proteins 83: 1225-1237. https://doi.org/10.1002/prot.24699
- Cardoso Ramos F, Cupellini L, Mennucci B. 2021. Computational investigation of structural and spectroscopic properties of LOV-based proteins with improved fluorescence. J. Phys. Chem. B 125: 1768-1777. https://doi.org/10.1021/acs.jpcb.0c10834
- Mishra A, Sharma A, Kateriya S. 2023. Effect of tryptophan mutation on the structure of LOV1 domain of phototropin1 protein of Ostreococcus tauri: a combined molecular dynamics simulation and biophysical approach. Biochim. Biophys. Acta Gen. Subj. 1867: 130304.
- Ko S, Hwang B, Na JH, Lee J, Jung ST. 2019. Engineered Arabidopsis blue light receptor LOV domain variants with improved quantum yield, brightness, and thermostability. J. Agric. Food Chem. 67: 12037-12043. https://doi.org/10.1021/acs.jafc.9b05473
- Liang GT, Lai C, Yue Z, Zhang H, Li D, Chen Z, et al. 2022. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front. Bioeng. Biotechnol. 10: 1039317.
- Mukherjee A, Weyant KB, Walker J, Schroeder CM. 2012. Directed evolution of bright mutants of an oxygen-independent flavin-binding fluorescent protein from Pseudomonas putida. J. Biol. Eng. 6: 20.
- He X, Zhang S, Dang D, Lin T, Ge Y, Chen X, et al. 2023. Detection of human annexin A1 as the novel N-terminal tag for separation and purification handle. Microb. Cell Fact. 22: 2.
- Baird GS, Zacharias DA, Tsien RY. 2000. Biochemistry, mutagenesis, and oligomerization of DSRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97: 11984-11989. https://doi.org/10.1073/pnas.97.22.11984
- Sarmiento C, Camarero JA. 2019. Biotechnological applications of protein splicing. Curr. Protein Pept. Sci. 20: 408-424. https://doi.org/10.2174/1389203720666190208110416
- Scott CP, Abel-Santos E, Wall M, Wahnon DC, Benkovic SJ. 1999. Production of cyclic peptides and proteins in vivo. Proc. Natl. Acad. Sci. USA 96: 13638-13643. https://doi.org/10.1073/pnas.96.24.13638
- Zhao Z, Ma X, Li L, Zhang W, Ping S, Xu MQ, et al. 2010. Protein cyclization enhanced thermostability and exopeptidase-resistance of green fluorescent protein. J. Microbiol. Biotechnol. 20: 460-466.
- Ciragan A, Aranko AS, Tascon I, Iwai H. 2016. Salt-inducible protein splicing in cis and trans by inteins from extremely Halophilic archaea as a novel protein-engineering tool. J. Mol. Biol. 428: 4573-4588. https://doi.org/10.1016/j.jmb.2016.10.006
- Stevens AJ, Sekar G, Shah NH, Mostafavi AZ, Cowburn D, Muir TW. 2017. A promiscuous split intein with expanded protein engineering applications. Proc. Natl. Acad. Sci. USA 114: 8538-8543. https://doi.org/10.1073/pnas.1701083114
- Callahan BP, Stanger M, Belfort M. 2013. A redox trap to augment the intein toolbox. Biotechnol. Bioeng. 110: 1565-1573. https://doi.org/10.1002/bit.24821
- Lin T, Zhang S, Zhang D, Chen X, Ge Y, Hu Y, et al. 2023. Use of the redox-dependent intein system for enhancing production of the cyclic green fluorescent protein. Protein Expr. Purif. 14: 106272.
- Zhou C, Yan Y, Fang J, Cheng B, Fan J. 2014. A new fusion protein platform for quantitatively measuring activity of multiple proteases. Microb. Cell Fact. 13: 44.
- Xiao W, Jiang L, Wang W, Wang R, Fan J. 2018. Evaluation of rice tetraticopeptide domain-containing thioredoxin as a novel solubility-enhancing fusion tag in Escherichia coli. J. Biosci. Bioeng. 125: 160-167. https://doi.org/10.1016/j.jbiosc.2017.08.016
- Kurz M, Cowieson NP, Robin G, Hume DA, Martin JL, Kobe B, et al. 2006. Incorporating a TEV cleavage site reduces the solubility of nine recombinant mouse proteins. Protein Expr. Purif. 50: 68-73. https://doi.org/10.1016/j.pep.2006.05.006
- Zou W, Nguyen HN, Zastrow ML. 2022. Mutant flavin-based fluorescent protein sensors for detecting intracellular zinc and copper in Escherichia coli. ACS Sens. 7: 3369-3378. https://doi.org/10.1021/acssensors.2c01376
- Nikolaev A, Yudenko A, Smolentseva A, Bogorodskiy A, Tsybrov F, Borshchevskiy V, et al. 2023. Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging. J. Biol. Chem. 299: 102977.
- Losi A, Gartner W, Raffelberg S, Cella Zanacchi F, Bianchini P, Diaspro A, et al. 2013. A photochromic bacterial photoreceptor with potential for super-resolution microscopy. Photochem. Photobiol. Sci. 12: 231-235. https://doi.org/10.1039/c2pp25254f
- Yudenko A, Smolentseva A, Maslov I, Semenov O, Goncharov IM, Nazarenko VV, et al. 2021. Rational design of a split flavin-based fluorescent reporter. ACS Synth. Biol. 10: 72-83. https://doi.org/10.1021/acssynbio.0c00454
- Homans RJ, Khan RU, Andrews MB, Kjeldsen AE, Natrajan LS, Marsden S, et al. 2018. Two photon spectroscopy and microscopy of the fluorescent flavoprotein, iLOV. Phys. Chem. Chem. Phys. 20: 16949-16955. https://doi.org/10.1039/C8CP01699B
- Iwai H, Pluckthun A. 1999. Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. 459: 166-172. https://doi.org/10.1016/S0014-5793(99)01220-X
- Nandy S, Maranholkar VM, Crum M, Wasden K, Patil U, Goyal A, et al. 2023. Expression and characterization of intein-cyclized trimer of Staphylococcus aureus protein A domain Z. Int. J. Mol. Sci. 24: 1281.
- Iwai H, Lingel A, Pluckthun A. 2001. Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J. Biol. Chem. 276: 16548-16554. https://doi.org/10.1074/jbc.M011639200
- Boassa D, Lemieux SP, Lev-Ram V, Hu J, Xiong Q, Phan S, et al. 2019. Split-miniSOG for spatially detecting intracellular protein-protein interactions by correlated light and electron microscopy. Cell Chem. Biol. 26: 1407-1416. https://doi.org/10.1016/j.chembiol.2019.07.007
- Nazarenko VV, Remeeva A, Yudenko A, Kovalev K, Dubenko A, Goncharov IM, et al. 2019. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies. Photochem. Photobiol. Sci. 18: 1793-1805. https://doi.org/10.1039/c9pp00067d
- Halavaty AS, Moffat K. 2007. N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry 46: 14001-14009. https://doi.org/10.1021/bi701543e
- Ojima-Kato T, Nagai S, Nakano H. 2017. N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae. J. Biosci. Bioeng. 123: 540-546. https://doi.org/10.1016/j.jbiosc.2016.12.004
- Cava F, de Pedro MA, Blas-Galindo E, Waldo GS, Westblade LF, Berenguer J. 2008. Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environ. Microbiol. 10: 605-613. https://doi.org/10.1111/j.1462-2920.2007.01482.x
- Stevens AJ, Brown ZZ, Shah NH, Sekar G, Cowburn D, Muir TW. 2016. Design of a split intein with exceptional protein splicing activity. J. Am. Chem. Soc. 138: 2162-2165. https://doi.org/10.1021/jacs.5b13528
- Xu Y, Zhang L, Ma B, Hu L, Lu H, Dou T, et al. 2018. Intermolecular disulfide bonds between unpaired cysteines retard the C-terminal trans-cleavage of Npu DnaE. Enzyme Microb. Technol. 118: 6-12. https://doi.org/10.1016/j.enzmictec.2018.06.013