Acknowledgement
This work was carried out with the support of the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01662001)" funded by Rural Development Administration, Republic of Korea. We thank Dr. Jochen Blom at Justus-Liebig University for performing EDGAR analysis.
References
- Hwang IC, Oh JK, Kim SH, Oh S, Kang DK. 2018. Isolation and characterization of an anti-listerial bacteriocin from Leuconostoc lactis SD501. Korean J. Food Sci. Anim. Resour. 38: 1008-1018. https://doi.org/10.5851/kosfa.2018.e33
- Saravanan C, Shetty PKH. 2016. Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. Int. J. Biol. Macromol. 90: 100-106. https://doi.org/10.1016/j.ijbiomac.2015.02.007
- Holland R, Liu, SQ. 2011. Lactic acid bacteria: Leuconostoc spp, pp. 138-142. In Fuguay J (ed.), Encyclopedia of Dairy Scienses, 2nd, Ed. Elsevier, London.
- Hemme D, Foucaud-Scheunemann C. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494. https://doi.org/10.1016/j.idairyj.2003.10.005
- Kim T, Heo S, Na HE, Lee G, Kim JH, Kwak MS, et al. 2022. Bacterial community of galchi-baechu kimchi based on culture-dependent and - independent investigation and selection of starter candidates. J. Microbiol. Biotechnol. 32: 341-347. https://doi.org/10.4014/jmb.2112.12003
- Lee ME, Jang JY, Lee JH, Park HW, Choi HJ, Kim TW. 2015. Starter cultures for kimchi fermentation. J. Microbiol. Biotechnol. 25: 559-568. https://doi.org/10.4014/jmb.1501.01019
- Ogier JC, Casalta E, Farrokh C, Saihi A. 2008. Safety assessment of dairy microorganisms: the Leuconostoc genus. Int. J. Food Microbiol. 126: 286-290. https://doi.org/10.1016/j.ijfoodmicro.2007.08.012
- Gumustop I, Ortakci F. 2022. Comparative genomics of Leuconostoc lactis strains isolated from human gastrointestinal system and fermented foods microbiomes. BMC Genom. 23: 61.
- Ahmadsah LSF, Min SG, Han SK, Hong Y, Kim HY. 2015. Effect of low salt concentrations on microbial changes during kimchi fermentation monitored by PCR-DGGE and their sensory acceptance. J. Microbiol. Biotechnol. 25: 2049-2057. https://doi.org/10.4014/jmb.1506.06058
- Axelsson L. 2004. Lactic acid bacteria: microbiology and functional aspects, pp. 1-67. In Salminen SvW A, Ouwehand A (eds.), Lactic Acid Bacteria: Classification and Physiology, Ed. Marcel Dekker, New York.
- Cicotello J, Wolf IV, D'Angelo L, Guglielmotti DM, Quiberoni A, Suarez VB. 2018. Response of Leuconostoc strains against technological stress factors: Growth performance and volatile profiles. Food Microbiol. 73: 362-370. https://doi.org/10.1016/j.fm.2018.02.010
- Cogan TM, Fitzgerald RJ, Doonan S. 1984. Acetolactate synthase of Leuconostoc lactis and its regulation of acetoin production. J. Dairy Res. 51: 597-604. https://doi.org/10.1017/S002202990003291X
- EFSA. 2007. Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J. 587: 1-16. https://doi.org/10.2903/j.efsa.2007.587
- Baroudi AAG, Collins EB. 1976. Microorganisms and characteristics of laban. J. Dairy Sci. 59: 200-202. https://doi.org/10.3168/jds.S0022-0302(76)84184-7
- Bora SS, Keot J, Das S, Sarma K, Barooah M. 2016. Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India. 3 Biotech. 6: 153.
- Elizaquivel P, Perez-Cataluna A, Yepez A, Aristimuno C, Jimenez E, Cocconcelli PS, et al. 2015. Pyrosequencing vs. culture-dependent approaches to analyze lactic acid bacteria associated to chicha, a traditional maize-based fermented beverage from Northwestern Argentina. Int. J. Food Microbiol. 198: 9-18. https://doi.org/10.1016/j.ijfoodmicro.2014.12.027
- International Dairy Federation. 2022. Inventory of microbial food cultures with safety demonstration in fermented food products (Bulletin of the IDF n° 514/2022).
- Patra JK, Das G, Paramithiotis S, Shin HS. 2016. Kimchi and other widely consumed traditional fermented foods of Korea: A Review. Front. Microbiol. 7: 1493.
- Jung JY, Lee SH, Jeon CO. 2014. Microbial community dynamics during fermentation of doenjang-meju, traditional Korean fermented soybean. Int. J. Food Microbiol. 185: 112-120. https://doi.org/10.1016/j.ijfoodmicro.2014.06.003
- Jung JY, Lee SH, Lee HJ, Seo HY, Park WS, Jeon CO. 2012. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 153: 378-387. https://doi.org/10.1016/j.ijfoodmicro.2011.11.030
- Chang JY, Chang HC. 2010. Improvements in the quality and shelf life of kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. J. Food Sci. 75: M103-110. https://doi.org/10.1111/j.1750-3841.2009.01486.x
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
- Tatusov RL, Koonin EV, Lipman DJ. 1997. A genomic perspective on protein families. Science 278: 631-637. https://doi.org/10.1126/science.278.5338.631
- Yoon S, Parsons F, Sundquist K, Julian J, Schwartz JE, Burg MM, et al. 2017. Comparison of different algorithms for sentiment analysis: Psychological stress notes. Stud. Health Technol. Inform. 245: 1292.
- Blom J, Kreis J, Spanig S, Juhre T, Bertelli C, Ernst C, et al. 2016. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 44: W22-28. https://doi.org/10.1093/nar/gkw255
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9: 75.
- CLSI. 2020. Perfomance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
- EFSA. 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10: 2740-2749. https://doi.org/10.2903/j.efsa.2012.2740
- Dinges MM, Orwin PM, Schlievert PM. 2000. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13: 16-34. https://doi.org/10.1128/CMR.13.1.16
- Jeong DW, Cho H, Lee H, Li C, Garza J, Fried M, et al. 2011. Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J. Bacteriol. 193: 4672-4684. https://doi.org/10.1128/JB.00353-11
- EFSA. 2005. Opinion of the scientific committee on a request from EFSA on the introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J. 587: 1-16.
- Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4. 10.1128/microbiolspec.VMBF-0016-2015.
- FAO/WHO. 2002. Working group report on drafting guidelines for the evaluation of probiotics in food London, Ontario, Canada.
- Starrenburg MJ, Hugenholtz J. 1991. Citrate fermentation by Lactococcus and Leuconostoc spp. Appl. Environ. Microbiol. 57: 3535-3540. https://doi.org/10.1128/aem.57.12.3535-3540.1991
- Kim SH, Park JH. 2022. Characterization of prophages in Leuconostoc derived from kimchi and genomic analysis of the induced prophage in Leuconostoc lactis. J. Microbiol. Biotechnol. 32: 333-340. https://doi.org/10.4014/jmb.2110.10046