DOI QR코드

DOI QR Code

Genomic Insights into Paucibacter aquatile DH15, a Cyanobactericidal Bacterium, and Comparative Genomics of the Genus Paucibacter

  • Ve Van Le (Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology) ;
  • So-Ra Ko (Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology) ;
  • Hee-Mock Oh (Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology) ;
  • Chi-Yong Ahn (Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology)
  • Received : 2023.07.06
  • Accepted : 2023.09.14
  • Published : 2023.12.28

Abstract

Microcystis blooms threaten ecosystem function and cause substantial economic losses. Microorganismbased methods, mainly using cyanobactericidal bacteria, are considered one of the most ecologically sound methods to control Microcystis blooms. This study focused on gaining genomic insights into Paucibacter aquatile DH15 that exhibited excellent cyanobactericidal effects against Microcystis. Additionally, a pan-genome analysis of the genus Paucibacter was conducted to enhance our understanding of the ecophysiological significance of this genus. Based on phylogenomic analyses, strain DH15 was classified as a member of the species Paucibacter aquatile. The genome analysis supported that strain DH15 can effectively destroy Microcystis, possibly due to the specific genes involved in the flagellar synthesis, cell wall degradation, and the production of cyanobactericidal compounds. The pan-genome analysis revealed the diversity and adaptability of the genus Paucibacter, highlighting its potential to absorb external genetic elements. Paucibacter species were anticipated to play a vital role in the ecosystem by potentially providing essential nutrients, such as vitamins B7, B12, and heme, to auxotrophic microbial groups. Overall, our findings contribute to understanding the molecular mechanisms underlying the action of cyanobactericidal bacteria against Microcystis and shed light on the ecological significance of the genus Paucibacter.

Keywords

Acknowledgement

This research was supported by the Korea Environment Industry & Technology Institute (KEITI) through Aquatic Ecosystem Conservation Research Program (2022003050004), the National Research Foundation of Korea (2023R1A2C1003308), and Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5252322).

References

  1. Novotny A, Serandour B, Kortsch S, Gauzens B, Jan KMG, Winder M. 2023. DNA metabarcoding highlights cyanobacteria as the main source of primary production in a pelagic food web model. Sci. Adv. 9: eadg1096.
  2. Svircev Z, Lalic D, Bojadzija Savic G, Tokodi N, Drobac Backovic D, Chen L, et al. 2019. Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Springer Berlin Heidelberg.
  3. Rastogi RP, Madamwar D, Incharoensakdi A. 2015. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front. Microbiol. 6: 1254.
  4. Le VV, Srivastava A, Ko SR, Ahn CY, Oh HM. 2022. Microcystis colony formation: extracellular polymeric substance, associated microorganisms , and its application. Bioresour. Technol. 360: 127610.
  5. Yan X, Xu X, Wang M, Wang G, Wu S, Li Z, et al. 2017. Climate warming and cyanobacteria blooms: looks at their relationships from a new perspective. Water Res. 125: 449-457.
  6. Sun R, Sun P, Zhang J, Esquivel-Elizondo S, Wu Y. 2018. Microorganisms-based methods for harmful algal blooms control: a review. Bioresour. Technol. 248: 12-20.
  7. Nishu S Das, Kang Y, Han, Jung TY, Lee TK. 2019. Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae. PLoS One 14: e0213370.
  8. Lu L, Niu X, Zhang D, Ma J, Zheng X, Xiao H, et al. 2021. The algicidal efficacy and the mechanism of Enterobacter sp. EA-1 on Oscillatoria dominating in aquaculture system. Environ. Res. 197: 111105.
  9. Zhang Y, Li J, Hu Z, Chen D, Li F, Huang X, et al. 2022. Transcriptome analysis reveals the algicidal mechanism of Brevibacillus laterosporus against Microcystis aeruginosa. Toxins (Basel) 14: 492.
  10. Luo J, Wang Y, Tang S, Liang J, Lin W, Luo L. 2013. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS One 8: e76444.
  11. Su JF, Shao SC, Huang TL, Ma F, Zhang K, Wen G, et al. 2016. Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa. Water Sci. Technol. 73: 2600-2607.
  12. Le VV, Ko SR, Kang M, Lee SA, Oh HM, Ahn CY. 2022. Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects. Environ. Pollut. 302: 119079.
  13. Zeng Y, Wang J, Yang C, Ding M, Hamilton PB, Zhang X, et al. 2021. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact. Sci. Total Environ. 769: 144489.
  14. Ahn CY, Joung SH, Jeon JW, Kim HS, Yoon BD, Oh HM. 2003. Selective control of cyanobacteria by surfactin-containing culture broth of Bacillus subtilis C1. Biotechnol Lett. 25: 1137-1142.
  15. Le VV, Ko SR, Kang M, Park CY, Lee SA, Oh HM, et al. 2022. The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession: a mesocosm study. Environ. Pollut. 311: 119849.
  16. Le VV, Ko SR, Kang M, Oh HM, Ahn CY. 2023. Effective control of harmful Microcystis blooms by paucibactin A, a novel macrocyclic tambjamine, isolated from Paucibacter aquatile DH15. J. Clean. Prod. 383: 135408.
  17. Coyne KJ, Wang Y, Johnson G. 2022. Algicidal bacteria: a review of current knowledge and applications to control harmful algal blooms. Front. Microbiol. 13: 871177.
  18. Pal M, Purohit HJ, Qureshi A. 2021. Genomic insight for algicidal activity in Rhizobium strain AQ_MP. Arch. Microbiol. 203: 5193-5203.
  19. Rapala J, Berg KA, Lyra C, Niemi RM, Manz W, Suomalainen S, et al. 2005. Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int. J. Syst. Evol. Microbiol. 55: 1563-1568.
  20. Pheng S, Lee JJ, Eom MK, Lee KH, Kim SG. 2017. Paucibacter oligotrophus sp. nov., isolated from fresh water, and emended description of the genus Paucibacter. Int. J. Syst. Evol. Microbiol. 67: 2231-2235.
  21. Nam YH, Choi A, Hwang JM, Yim KJ, Kim JH, Choi GG, et al. 2018. Paucibacter aquatile sp. nov. isolated from freshwater of the Nakdong River, Republic of Korea. Arch. Microbiol. 200: 877-882.
  22. Chung EJ, Choi GG, Nam YH, Choi A. 2018. Draft genome sequence of Paucibacter aquatile CR182 T, a strain with antimicrobial activity isolated from freshwater of Nakdong River in South Korea. Genome Announc. 6: e00194-18.
  23. Kayani MUR, Zaidi SSA, Feng R, Yu K, Qiu Y, Yu X, et al. 2022. Genome-resolved characterization of structure and potential functions of the zebrafish stool microbiome. Front. Cell. Infect. Microbiol. 12: 910766.
  24. Le VV, Ko SR, Kang M, Oh HM, Ahn CY. 2022. Hymenobacter cyanobacteriorum sp. nov., isolated from a freshwater reservoir during the cyanobacterial bloom period. Arch. Microbiol. 204: 369.
  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  26. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027.
  27. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963.
  28. Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094-3100.
  29. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva E V., Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210-3212.
  30. Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
  31. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. 2020. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res. 48: D606-D612.
  32. Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38: 5825-5829.
  33. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87.
  34. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46: W95-W101.
  35. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. 2021. Community-led, integrated, reproducible multi-omics with anvi'o. Nat. Microbiol. 6: 3-6.
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
  37. Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182.
  38. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31: 3691-3693.
  39. Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428: 726-731.
  40. Hayashi Sant'Anna F, Bach E, Porto RZ, Guella F, Hayashi Sant'Anna E, Passaglia LMP. 2019. Genomic metrics made easy: what to do and where to go in the new era of bacterial taxonomy. Crit. Rev. Microbiol. 45: 182-200.
  41. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131.
  42. Auch AF, von Jan M, Klenk HP, Goker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Standard. Genomic Sci. 2: 117-134.
  43. Zhou Q, Zhang Y, Han S, Wang Y, Qin H, Zhang Z. 2021. Physiological responses of Microcystis aeruginosa to extracellular degradative enzymes and algicidal substance from heterotrophic bacteria. Pol. J. Environ. Stud. 30: 2947-2955.
  44. De Maayer P, Pillay T, Coutinho TA. 2020. Flagella by numbers: comparative genomic analysis of the supernumerary flagellar systems among the Enterobacterales. BMC Genomics 21: 670.
  45. Meyer N, Bigalke A, Kaulfuss A, Pohnert G. 2017. Strategies and ecological roles of algicidal bacteria. FEMS Microbiol. Rev. 41: 880-899.
  46. Guo Y, Zhao X, Yao Z, Qian Z, Wang Y, Xian Q. 2023. The effects of exogenous amino acids on production of microcystin variants in Microcystis aeruginosa. Aquat. Toxicol. 259: 106525.
  47. Kim W, Kim M, Park W. 2023. Unlocking the mystery of lysine toxicity on Microcystis aeruginosa. J. Hazard. Mater. 448: 130932.
  48. Tian L, Chen M, Ren C, Wang Y, Li L. 2018. Anticyanobacterial effect of l-lysine on: Microcystis aeruginosa. RSC Adv. 8: 21606-21612.
  49. Jurgens UJ, Martin C, Weckesser J. 1989. Cell wall constituents of Microcystis sp. PCC 7806. FEMS Microbiol. Lett. 65: 47-51.
  50. Han G, Ma H, Ren S, Gao X, He X, Zhu S, et al. 2020. Insights into the mechanism of cyanobacteria removal by the algicidal fungi Bjerkandera adusta and Trametes versicolor. MicrobiologyOpen 9: e1042.
  51. Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, et al. 2018. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 46: D516-D521.
  52. Low KE, Xing X, Moote PE, Inglis GD, Venketachalam S, Hahn MG, et al. 2020. Combinatorial glycomic analyses to direct CAZyme discovery for the tailored degradation of canola meal non-starch dietary polysaccharides. Microorganisms 8: 1888.
  53. Lairson LL, Henrissat B, Davies GJ, Withers SG. 2008. Glycosyl transferases: structures, functions, and mechanisms. Ann. Rev. Biochem. 77: 521-555.
  54. Nakamura AM, Nascimento AS, Polikarpov I. 2017. Structural diversity of carbohydrate esterases. Biotechnol. Res. Innov. 1: 35-51.
  55. Liu Y, Wang P, Tian J, Seidi F, Guo J, Zhu W, et al. 2022. Carbohydrate-binding modules of potential resources: occurrence in nature, function, and application in fiber recognition and treatment. Polymers 14: 1806.
  56. Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ. 2021. Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J. Biol. Eng. 15: 10.
  57. Yang K, Chen Q, Zhang D, Zhang H, Lei X, Chen Z, et al. 2017. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa. Sci. Rep. 7: 7750.
  58. Balzarini J, Van Laethem K, Daelemans D, Hatse S, Bugatti A, Rusnati M, et al. 2007. Pradimicin A, a carbohydrate-binding nonpeptidic lead compound for treatment of infections with viruses with highly glycosylated envelopes, such as human immunodeficiency virus. J. Virol. 81: 362-373.
  59. Jiang Y, Matsumoto T, Kuranaga T, Lu S, Wang W, Onaka H, et al. 2021. Longicatenamides A-D, two diastereomeric pairs of cyclic hexapeptides produced by combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. J. Antibiot. 74: 307-316.
  60. Ekundayo FO, Folorunsho AE, Ibisanmi TA, Olabanji OB. 2022. Antifungal activity of chitinase produced by Streptomyces species isolated from grassland soils in Futa Area, Akure. Bull. Natl. Res. Cent. 46: 95.
  61. Santoso P, Minamihata K, Ishimine Y, Taniguchi H, Komada T, Sato R, et al. 2022. Enhancement of the antifungal activity of chitinase by palmitoylation and the synergy of palmitoylated chitinase with amphotericin B. ACS Infect. Dis. 8: 1051-1061.
  62. Liang W, Zhao Y, Chen C, Cui X, Yu J, Xiao J, et al. 2012. Pan-genomic analysis provides insights into the genomic variation and evolution of Salmonella Paratyphi A. PLoS One 7: e45346.
  63. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15: 589-594.
  64. Condon C, Liveris D, Squires C, Schwartz I, Squires CL. 1995. rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J. Bacteriol. 177: 4152-4156.
  65. Sharrar AM, Crits-Christoph A, Meheust R, Diamond S, Starr EP, Banfield JF. 2020. Bacterial secondary metabolite biosynthetic potential in soil. mBio 11: 1-17.
  66. Caicedo-Montoya C, Manzo-Ruiz M, Rios-Estepa R. 2021. Pan-Genome of the genus Streptomyces and prioritization of biosynthetic gene clusters with potential to produce antibiotic compounds. Front. Microbiol. 12: 677558.
  67. Helfrich EJN, Lin GM, Voigt CA, Clardy J. 2019. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J. Org. Chem. 15: 2889-2906.
  68. Hegemann JD, Zimmermann M, Xie X, Marahiel MA. 2015. Lasso peptides: an intriguing class of bacterial natural products. Acc. Chem. Res. 48: 1909-1919.
  69. Lee CM, Kim SY, Yoon SH, Kim JB, Yeo YS, Sim JS, et al. 2019. Characterization of a novel antibacterial N-acyl amino acid synthase from soil metagenome. J. Biotechnol. 294: 19-25.
  70. Bushley KE, Turgeon BG. 2010. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol. Biol. 10: 26.
  71. Dror B, Wang Z, Brady SF, Jurkevitch E, Cytryn E. 2020. Elucidating the diversity and potential function of nonribosomal peptide and polyketide biosynthetic gene clusters in the root microbiome. mSystems 5: e00866-20.
  72. Joglar V, Pontiller B, Martinez-Garcia S, Fuentes-Lema A, Perez-Lorenzo M, Lundin D, et al. 2021. Microbial plankton community structure and function system. Appl. Environ. Microbiol. 87: e0152521.
  73. Satiaputra J, Shearwin KE, Booker GW, Polyak SW. 2016. Mechanisms of biotin-regulated gene expression in microbes. Synth. Syst. Biotechnol. 1: 17-24.
  74. Watanabe F, Bito T. 2018. Vitamin B12 sources and microbial interaction. Exp. Biol. Med. 243: 148-158.
  75. Zempleni J, Wijeratne SSK, Hassan YI. 2009. Biotin. BioFactors 35: 36-46.
  76. Zempleni J, Teixeira DC, Kuroishi T, Cordonier EL, Baier S. 2012. Biotin requirements for DNA damage prevention. Mutat. Res. 733: 58-60.
  77. Alzoubi KH, Bayraktar E, Khabour O, Al-Azzam SI. 2018. Vitamin B12 protects against DNA damage induced by hydrochlorothiazide. Saudi Pharm. J. 26: 786-789.
  78. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 2002. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19: 390-412.
  79. Xu Y, Xiang S, Ye K, Zheng Y, Feng X, Zhu X, et al. 2018. Cobalamin (Vitamin B12) induced a shift in microbial composition and metabolic activity in an in vitro colon simulation. Front. Microbiol. 9: 2780.
  80. Kim S, Kang I, Lee JW, Jeon CO, Giovannoni SJ, Cho JC. 2021. Heme auxotrophy in abundant aquatic microbial lineages. Proc. Natl. Acad. Sci. USA 118: e2102750118.