DOI QR코드

DOI QR Code

Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from Corynebacterium glutamicum

  • Chan Hwi Lee (School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University) ;
  • Sangwoo Kim (KNU Institute for Microorganisms, Kyungpook National University) ;
  • Hogyun Seo (KNU Institute for Microorganisms, Kyungpook National University) ;
  • Kyung-Jin Kim (School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University)
  • 투고 : 2023.05.19
  • 심사 : 2023.08.03
  • 발행 : 2023.12.28

초록

Dehydroquinate dehydratase (DHQD) catalyzes the conversion of 3-dehydroquinic acid (DHQ) into 3-dehydroshikimic acid in the mid stage of the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids and folates. Here, we report two the crystal structures of type II DHQD (CgDHQD) derived from Corynebacterium glutamicum, which is a widely used industrial platform organism. We determined the structures for CgDHQDWT with the citrate at a resolution of 1.80Å and CgDHQDR19A with DHQ complexed forms at a resolution of 2.00 Å, respectively. The enzyme forms a homododecamer consisting of four trimers with three interfacial active sites. We identified the DHQ-binding site of CgDHQD and observed an unusual binding mode of citrate inhibitor in the site with a half-opened lid loop. A structural comparison of CgDHQD with a homolog derived from Streptomyces coelicolor revealed differences in the terminal regions, lid loop, and active site. Particularly, CgDHQD, including some Corynebacterium species, possesses a distinctive residue P105, which is not conserved in other DHQDs at the position near the 5-hydroxyl group of DHQ. Replacements of P105 with isoleucine and valine, conserved in other DHQDs, caused an approximately 70% decrease in the activity, but replacement of S103 with threonine (CgDHQDS103T) caused a 10% increase in the activity. Our biochemical studies revealed the importance of key residues and enzyme kinetics for wild type and CgDHQDS103T, explaining the effect of the variation. This structural and biochemical study provides valuable information for understanding the reaction efficiency that varies due to structural differences caused by the unique sequences of CgDHQD.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education(NRF-2020R1I1A1A01058189).

참고문헌

  1. Kinoshita S, Udaka S, Shimono M. 1957. Studies on the amino acid fermentation Part I. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3: 193-205. 
  2. Udaka S. 1960. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J. Bacteriol. 79: 754. 
  3. Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109. 
  4. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25. 
  5. Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. Microb. Physiol. 7: 182-196. 
  6. Okino S, Inui M, Yukawa H. 2005. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 68: 475-480. 
  7. Liu YB, Long MX, Yin YJ, Si MR, Zhang L, Lu ZQ, et al. 2013. Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum. Arch. Microbiol. 195: 419-429. 
  8. Kubota T, Watanabe A, Suda M, Kogure T, Hiraga K, Inui M. 2016. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab. Eng. 38: 322-330. 
  9. Kitade Y, Hashimoto R, Suda M, Hiraga K, Inui M. 2018. Production of 4-hydroxybenzoic acid by an aerobic growth-arrested bioprocess using metabolically engineered Corynebacterium glutamicum. Appl. Environ. Microbiol. 84: e02587-02517. 
  10. Blombach B, Seibold GM. 2010. Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl. Microbiol. Biotechnol. 86: 1313-1322. 
  11. Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H. 2009. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl. Microbiol. Biotechnol. 85: 105-115. 
  12. Becker J, Wittmann C. 2012. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Curr. Opin. Biotechnol. 23: 631-640. 
  13. Eggeling L, Bott M. 2015. A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 3387-3394. 
  14. Hirasawa T, Shimizu H. 2016. Recent advances in amino acid production by microbial cells. Curr. Opin. Biotechnol. 42: 133-146. 
  15. Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, et al. 2017. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour. Technol. 245: 1588-1602. 
  16. Baritugo KA, Kim HT, David Y, Choi JI, Hong SH, Jeong KJ, et al. 2018. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl. Microbiol. Biotechnol. 102: 3915-3937. 
  17. Wendisch VF. 2020. Metabolic engineering advances and prospects for amino acid production. Metab. Eng. 58: 17-34. 
  18. Becker J, Giesselmann G, Hoffmann SL, Wittmann C. 2018. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. Adv. Biochem. Eng. Biotechnol. 162: 217-263. 
  19. Ikeda M, Nakanishi K, Kino K, Katsumata R. 1994. Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Biosci. Biotechnol. Biochem. 58: 674-678. 
  20. Ikeda M, Katsumata R. 1999. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl. Environ. Microbiol. 65: 2497-2502. 
  21. Kallscheuer N, Marienhagen J. 2018. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids. Microb. Cell Fact. 17: 70. 
  22. Kogure T, Kubota T, Suda M, Hiraga K, Inui M. 2016. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab. Eng. 38: 204-216. 
  23. Herrmann KM, Weaver LM. 1999. The shikimate pathway. Ann. Rev. Plant Biol. 50: 473-503. 
  24. Herrmann KM. 1995. The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol. 107: 7. 
  25. Maeda H, Dudareva N. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Ann. Rev. Plant Biol. 63: 73-105. 
  26. Roberts CW, Roberts F, Lyons RE, Kirisits MJ, Mui EJ, Finnerty J, et al. 2002. The shikimate pathway and its branches in apicomplexan parasites. J. Infect. Dis. 185: S25-S36. 
  27. Lee JH, Wendisch VF. 2017. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol. 257: 211-221. 
  28. Averesch NJ, Kromer JO. 2018. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Front. Bioeng. Biotechnol. 6: 32. 
  29. Li Z, Wang H, Ding D, Liu Y, Fang H, Chang Z, et al. 2020. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway. J. Ind. Microbiol. Biotechnol. 47: 525-535. 
  30. Chen X, Li M, Zhou L, Shen W, Algasan G, Fan Y, et al. 2014. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. Bioresour. Technol. 166: 64-71. 
  31. Martinez JA, Bolivar F, Escalante A. 2015. Shikimic acid production in Escherichia coli: from classical metabolic engineering strategies to omics applied to improve its production. Front. Bioeng. Biotechnol. 3: 145. 
  32. Diaz-Quiroz DC, Cardona-Felix CS, Viveros-Ceballos JL, Reyes-Gonzalez MA, Bolivar F, Ordonez M, et al. 2018. Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli. J. Enzyme Inhibit. Med. Chem. 33: 397-404. 
  33. Kleanthous C, Deka R, Davis K, Kelly S, Cooper A, Harding S, et al. 1992. A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes. Biochem. J. 282: 687-695. 
  34. Gourley DG, Shrive AK, Polikarpov I, Krell T, Coggins JR, Hawkins AR, et al. 1999. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nat. Struct. Biol. 6: 521-525. 
  35. Chaudhuri S, Duncan K, Graham L, Coggins JR. 1991. Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases. Biochem. J. 275: 1-6. 
  36. Harris J, Kleanthous C, Coggins JR, Hawkins AR, Abell C. 1993. Different mechanistic and stereochemical courses for the reactions catalysed by type I and type II dehydroquinases. J. Chem. Soc. Chem. Commun. 13: 1080-1081. 
  37. Butler JR, Alworth WL, Nugent MJ. 1974. Mechanism of dehydroquinase catalyzed dehydration. I. Formation of a Schiff base intermediate. J. Am. Chem. Soc. 96: 1617-1618. 
  38. Leech AP, James R, Coggins JR, Kleanthous C. 1995. Mutagenesis of active site residues in type I dehydroquinase from Escherichia coli: Stalled catalysis in a histidine to alanine mutant. J. Biol. Chem. 270: 25827-25836. 
  39. Burnett RM, Darling GD, Kendall DS, LeQuesne ME, Mayhew SG, Smith WW, et al. 1974. The structure of the oxidized form of clostridial flavodoxin at 1.9-A resolution: J. Biol. Chem. 249: 4383-4392. 
  40. Liu H, Jin Y, Zhang R, Ning Y, Yu Y, Xu P, et al. 2022. Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol. Adv. 62: 108076. 
  41. Park SY, Ha SC, Kim YG. 2017. The protein crystallography beamlines at the pohang light source II. Biodesign. 5: 30-34. 
  42. Otwinowski Z, Minor W. 1997. [20] Processing of X-ray diffraction data collected in oscillation mode, pp. 307-326. Methods in enzymology, Ed. Elsevier, 
  43. Matthews BW. 1968. Solvent content of protein crystals. J. Mol. Biol. 33: 491-497. 
  44. Vagin A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. Acta Crystallogr. D Biol. Crystallogr. 66: 22-25. 
  45. Frederickson M, Roszak AW, Coggins JR, Lapthorn AJ, Abell C. 2004. (1R, 4S, 5R)-3-Fluoro-1, 4, 5-trihydroxy-2-cyclohexene-1-carboxylic acid: the fluoro analogue of the enolate intermediate in the reaction catalyzed by type II dehydroquinases. Organic Biomol. Chem. 2: 1592-1596. 
  46. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. 
  47. Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53: 240-255. 
  48. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67: 235-242. 
  49. Mirdita M, Schutze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making protein folding accessible to all. Nat. Methods 19: 679-682. 
  50. DeLano WL. 2002. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40: 82-92. 
  51. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9. 
  52. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. 
  53. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539. 
  54. Roszak AW, Robinson DA, Krell T, Hunter IS, Fredrickson M, Abell C, et al. 2002. The structure and mechanism of the type II dehydroquinase from Streptomyces coelicolor. Structure 10: 493-503. 
  55. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Eevol. 38: 3022-3027. 
  56. Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res. 14: 1188-1190. 
  57. Mituhashi S, Davis BD. 1954. Aromatic biosynthesis: XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. Et Biophys. Acta 15: 54-61. 
  58. Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372: 774-797. 
  59. Ribeiro AJM, Holliday GL, Furnham N, Tyzack JD, Ferris K, Thornton JM. 2018. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Res. 46: D618-D623. 
  60. Dias MV, Snee WC, Bromfield KM, Payne RJ, Palaninathan SK, Ciulli A, et al. 2011. Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis. Biochem. J. 436: 729-739. 
  61. Robinson DA, Stewart KA, Price NC, Chalk PA, Coggins JR, Lapthorn AJ. 2006. Crystal structures of Helicobacter pylori type II dehydroquinase inhibitor complexes: New directions for inhibitor design. J. Med. Chem. 49: 1282-1290. 
  62. de Avila MB, de Azevedo Jr WF. 2018. Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem. Biol. Drug Design 92: 1468-1474. 
  63. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. 2016. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44: W344-W350.