DOI QR코드

DOI QR Code

Role of Dgat2 in Glucose Uptake and Fatty Acid Metabolism in C2C12 Skeletal Myotubes

  • So Young Bu (Department of Food and Nutrition, College of Engineering, Daegu University)
  • Received : 2023.07.14
  • Accepted : 2023.07.31
  • Published : 2023.12.28

Abstract

Acyl-coenzyme A (CoA):diacylglycerol acyltransferase 2 (DGAT2) catalyzes the last stage of triacylglycerol (TAG) synthesis, a process that forms ester bonds with diacylglycerols (DAG) and fatty acyl-CoA substrates. The enzymatic role of Dgat2 has been studied in various biological species. Still, the full description of how Dgat2 channels fatty acids in skeletal myocytes and the consequence thereof in glucose uptake have yet to be well established. Therefore, this study explored the mediating role of Dgat2 in glucose uptake and fatty acid partitioning under short interfering ribonucleic acid (siRNA)-mediated Dgat2 knockdown conditions. Cells transfected with Dgat2 siRNA downregulated glucose transporter type 4 (Glut4) messenger RNA (mRNA) expression and decreased the cellular uptake of [1-14C]-labeled 2-deoxyglucose up to 24.3% (p < 0.05). Suppression of Dgat2 deteriorated insulin-induced Akt phosphorylation. Dgat2 siRNA reduced [1-14C]-labeled oleic acid incorporation into TAG, but increased the level of [1-14C]-labeled free fatty acids at 3 h after initial fatty acid loading. In an experiment of chasing radioisotope-labeled fatty acids, Dgat2 suppression augmented the level of cellular free fatty acids. It decreased the level of re-esterification of free fatty acids to TAG by 67.6% during the chase period, and the remaining pulses of phospholipids and cholesteryl esters were decreased by 34.5% and 61%, respectively. Incorporating labeled fatty acids into beta-oxidation products increased in Dgat2 siRNA transfected cells without gene expression involving fatty acid oxidation. These results indicate that Dgat2 has regulatory function in glucose uptake, possibly through the reaction of TAG with endogenously released or recycled fatty acids.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No. 2021R1F1A1062898).

References

  1. Coleman RA. 2019. It takes a village: channeling fatty acid metabolism and triacylglycerol formation via protein interactomes. J. Lipid Res. 60: 490-497. 
  2. Birsoy K, Festuccia WT, Laplante M. 2013. A comparative perspective on lipid storage in animals. J. Cell Sci. 126: 1541-1552. 
  3. Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, et al. 1997. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46: 983-988. 
  4. Randle PJ, Garland PB, Hales CN, Newsholme EA. 1963. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785-789. 
  5. Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F, et al. 2012. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes 61: 2679-2690. 
  6. van der Kolk BW, Goossens GH, Jocken JW, Blaak EE. 2016. Altered skeletal muscle fatty acid handling is associated with the degree of insulin resistance in overweight and obese humans. Diabetologia 59: 2686-2696. 
  7. Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, et al. 2007. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J. Biol. Chem. 282: 22678-22688. 
  8. Schenk S, Horowitz JF. 2007. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J. Clin. Invest. 117: 1690-1698. 
  9. Jung YH, Bu SY. 2020. Suppression of long chain acyl-CoA synthetase blocks intracellular fatty acid flux and glucose uptake in skeletal myotubes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865: 158678- 
  10. Sathyanarayan A, Mashek MT, Mashek DG. 2017. ATGL Promotes Autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep. 19: 1-9. 
  11. Kanaley JA, Shadid S, Sheehan MT, Guo Z, Jensen MD. 2009. Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans. J. Physiol. 587: 5939-5950. 
  12. Bu SY, Mashek DG. 2010. Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J. Lipid Res. 51: 3270-3280. 
  13. Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, et al. 2001. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 276: 38870-38876. 
  14. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, et al. 1998. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl. Acad. Sci. USA 95: 13018-13023. 
  15. Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. 2022. Acyl-CoA:diacylglycerol acyltransferase: properties, physiological roles, metabolic engineering and intentional control. Prog. Lipid Res. 88: 101181- 
  16. Chitraju C, Walther TC, Farese RV, Jr. 2019. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J. Lipid Res. 60: 1112-1120. 
  17. Chen HC, Smith SJ, Ladha Z, Jensen DR, Ferreira LD, Pulawa LK, et al. 2002. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J. Clin. Invest. 109: 1049-1055. 
  18. Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, et al. 2000. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25: 87-90. 
  19. Chitraju C, Mejhert N, Haas JT, Diaz-Ramirez LG, Grueter CA, Imbriglio JE, et al. 2017. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 26: 407-418. 
  20. Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, et al. 2004. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279: 11767-11776. 
  21. Liu L, Shi X, Bharadwaj KG, Ikeda S, Yamashita H, Yagyu H, et al. 2009. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J. Biol. Chem. 284: 36312-36323. 
  22. Glenn DJ, Wang F, Nishimoto M, Cruz MC, Uchida Y, Holleran WM, et al. 2011. A murine model of isolated cardiac steatosis leads to cardiomyopathy. Hypertension 57: 216-222. 
  23. Liu L, Yu S, Khan RS, Ables GP, Bharadwaj KG, Hu Y, et al. 2011. DGAT1 deficiency decreases PPAR expression and does not lead to lipotoxicity in cardiac and skeletal muscle. J. Lipid Res. 52: 732-744. 
  24. Roe ND, Handzlik MK, Li T, Tian R. 2018. The role of diacylglycerol acyltransferase (DGAT) 1 and 2 in cardiac metabolism and function. Sci. Rep. 8: 4983- 
  25. Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu YH. 2007. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J. Clin. Invest. 117: 1679-1689. 
  26. Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu YH. 2007. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J. Clin. Invest. 117: 1679-1689. 
  27. Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese RV Jr. 2009. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J. Biol. Chem. 284: 5352-5361. 
  28. Lovsletten NG, Vu H, Skagen C, Lund J, Kase ET, Thoresen GH, et al. 2020. Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism. Sci. Rep. 10: 238- 
  29. Levin MC, Monetti M, Watt MJ, Sajan MP, Stevens RD, Bain JR, et al. 2007. Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle. Am. J. Physiol. Endocrinol. Metab. 293: E1772-E1781. 
  30. Ferrannini E, Simonson DC, Katz LD, Reichard G, Jr., Bevilacqua S, Barrett EJ, et al. 1988. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 37: 79-85. 
  31. Sacchetti M, Saltin B, Olsen DB, van HG. 2004. High triacylglycerol turnover rate in human skeletal muscle. J. Physiol. 561: 883-891. 
  32. BLIGH EG,DYER WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. 
  33. Jang M, Scheffold J, Rost LM, Cheon H, Bruheim P. 2022. Serum-free cultures of C2C12 cells show different muscle phenotypes which can be estimated by metabolic profiling. Sci. Rep. 12: 827. 
  34. Tan Y, Jin Y, Zhao P, Wu J, Ren Z. 2021. Lipid droplets contribute myogenic differentiation in C2C12 by promoting the remodeling of the acstin-filament. Cell Death. Dis. 12: 1102. 
  35. Yang M, Wei D, Mo C, Zhang J, Wang X, Han X, et al. 2013. Saturated fatty acid palmitate-induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes. Lipids Health Dis. 12: 104. 
  36. Chang YC, Liu HW, Chen YT, Chen YA, Chen YJ, Chang SJ. 2018. Resveratrol protects muscle cells against palmitate-induced cellular senescence and insulin resistance through ameliorating autophagic flux. J. Food Drug Anal. 26: 1066-1074. 
  37. Zhao L, Pascual F, Bacudio L, Suchanek AL, Young PA, Li LO, et al. 2019. Defective fatty acid oxidation in mice with muscle-specific acyl-CoA synthetase 1 deficiency increases amino acid use and impairs muscle function. J. Biol. Chem. 294: 8819-8833. 
  38. Galgani JE, Moro C, Ravussin E. 2008. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab 295: E1009-E1017. 
  39. Galante P, Mosthaf L, Kellerer M, Berti L, Tippmer S, Bossenmaier B, et al. 1995. Acute hyperglycemia provides an insulin-independent inducer for GLUT4 translocation in C2C12 myotubes and rat skeletal muscle. Diabetes 44: 646-651. 
  40. Busch AK, Gurisik E, Cordery DV, Sudlow M, Denyer GS, Laybutt DR, et al. 2005. Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme A desaturase protects pancreatic beta-cells from lipoapoptosis. Diabetes 54: 2917-2924. 
  41. Li YZ, Di CA, Woo M. 2020. Metabolic role of PTEN in insulin signaling and resistance. Cold Spring Harb. Perspect. Med. 10: a036137. 
  42. Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, et al. 1999. The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J. Biol. Chem. 274: 17934-17940. 
  43. Yao DW, Ma J, Yang CL, Chen LL, He QY, Coleman DN, et al. 2021. Phosphatase and tensin homolog (PTEN) suppresses triacylglycerol accumulation and monounsaturated fatty acid synthesis in goat mammary epithelial cells. J. Dairy Sci. 104: 7283-7294. 
  44. Li HB, Yang YR, Mo ZJ, Ding Y, Jiang WJ. 2015. Silibinin improves palmitate-induced insulin resistance in C2C12 myotubes by attenuating IRS-1/PI3K/Akt pathway inhibition. Braz. J. Med. Biol. Res. 48: 440-446. 
  45. Ramachandran V, Saravanan R. 2015. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum. Exp. Toxicol. 34: 884-893. 
  46. Irshad Z, Dimitri F, Christian M, Zammit VA. 2017. Diacylglycerol acyltransferase 2 links glucose utilization to fatty acid oxidation in the brown adipocytes. J. Lipid Res. 58: 15-30. 
  47. Hankir MK, Cowley MA, Fenske WK. 2016. A BAT-centric approach to the treatment of diabetes: turn on the brain. Cell Metab. 24: 31-40. 
  48. Wurie HR, Buckett L, Zammit VA. 2012. Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells. FEBS J. 279: 3033-3047. 
  49. Liu Q, Siloto RM, Lehner R, Stone SJ, Weselake RJ. 2012. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog. Lipid Res. 51: 350-377. 
  50. Kuerschner L, Moessinger C, Thiele C. 2008. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9: 338-352. 
  51. Li C, Li L, Lian J, Watts R, Nelson R, Goodwin B, et al. 2015. Roles of Acyl-CoA:diacylglycerol acyltransferases 1 and 2 in Triacylglycerol synthesis and secretion in primary hepatocytes. Arterioscler. Thromb. Vasc. Biol. 35: 1080-1091. 
  52. Denison H, Nilsson C, Kujacic M, Lofgren L, Karlsson C, Knutsson M, et al. 2013. Proof of mechanism for the DGAT1 inhibitor AZD7687: results from a first-time-in-human single-dose study. Diabetes Obes. Metab. 15: 136-143. 
  53. Amin NB, Carvajal-Gonzalez S, Purkal J, Zhu T, Crowley C, Perez S, Chidsey K, Kim AM, Goodwin B. 2019. Targeting diacylglycerol acyltransferase 2 for the treatment of nonalcoholic steatohepatitis. Sci. Transl. Med. 11: eaav9701. 
  54. Hong YB, Kang J, Kim JH, Lee J, Kwak G, Hyun YS, et al. 2016. DGAT2 Mutation in a family with autosomal-dominant early-onset axonal charcot-marie-tooth disease. Hum. Mutat. 37: 473-480. 
  55. Graber M, Barta H, Wood R, Pappula A, Vo M, Petreaca RC, et al. 2021. Comprehensive genetic analysis of DGAT2 mutations and gene expression patterns in human cancers. Biology (Basel) 10: 714. 
  56. Nedachi T, Fujita H, Kanzaki M. 2008. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 295: E1191-E1204.