DOI QR코드

DOI QR Code

Development of a Novel ATP Bioluminescence Assay Based on Engineered Probiotic Saccharomyces boulardii Expressing Firefly Luciferase

  • Ji Sun Park (Department of Systems Biotechnology, Chung-Ang University) ;
  • Young-Woo Kim (Department of Food Science and Technology, Chung-Ang University) ;
  • Hyungdong Kim (Department of Food Science and Technology, Chung-Ang University) ;
  • Sun-Ki Kim (Department of Food Science and Technology, Chung-Ang University) ;
  • Kyeongsoon Park (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2023.05.19
  • Accepted : 2023.07.18
  • Published : 2023.11.28

Abstract

Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.

Keywords

Acknowledgement

This study was financially supported by the National Research Foundation of Korea Grant (2021R1A4A1022206), funded by the Korean Ministry of Science, ICT and Future Planning, and by a grant (21153MFDS605) from the Ministry of Food and Drug Safety in 2023. This research was also supported by the Chung-Ang University Graduate Research Scholarship (Academic Scholarship for the College of Biotechnology and Natural Resources) in 2023.

References

  1. Atkinson DE, Walton GM. 1967. Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J. Biol. Chem. 242: 3239-3241.
  2. Efremenko E, Senko O, Stepanov N, Maslova O, Lomakina GY, Ugarova N. 2022. Luminescent analysis of ATP: modern objects and processes for sensing. Chemosensors 10: 493.
  3. Scott BM, Gutierrez-Vazquez C, Sanmarco LM, da Silva Pereira JA, Li Z, Plasencia A, et al. 2021. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27: 1212-1222.
  4. Kunzli BM, Bernlochner MI, Rath S, Kaser S, Csizmadia E, Enjyoji K, et al. 2011. Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer. Purinergic Signal. 7: 231-241.
  5. Lomakina GY, Modestova YA, Ugarova NN. 2015. Bioluminescence assay for cell viability. Biochemistry (Moscow) 80: 701-713.
  6. Chen XJ, Ren SR, Jin ZH, Zhu SG. 1996. Production and purification of firefly luciferase in Escherichia coli. Biotechnol. Tech. 10: 89-92.
  7. Dewet JR, Wood KV, Helinski DR, Deluca M. 1985. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 7870-7873.
  8. Khatri I, Tomar R, Ganesan K, Prasad GS, Subramanian S. 2017. Complete genome sequence and comparative genomics of the probiotic yeast Saccharomyces boulardii. Sci. Rep. 7: 371.
  9. Jin Y, Yu S, Liu JJ, Yun EJ, Lee JW, Jin YS, et al. 2021. Production of neoagarooligosaccharides by probiotic yeast Saccharomyces cerevisiae var. boulardii engineered as a microbial cell factory. Microb. Cell Fact. 20: 160.
  10. Gomes AMV, Carmo TS, Carvalho LS, Bahia FM, Parachin NS. 2018. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6: 38.
  11. Pais P, Oliveira J, Almeida V, Yilmaz M, Monteiro PT, Teixeira MC. 2021. Transcriptome-wide differences between Saccharomyces cerevisiae and Saccharomyces cerevisiae var. boulardii: clues on host survival and probiotic activity based on promoter sequence variability. Genomics 113: 530-539.
  12. Blehaut H, Massot J, Elmer GW, Levy RH. 1989. Disposition kinetics of Saccharomyces boulardii in man and rat. Biopharm. Drug Dispos. 10: 353-364.
  13. Kim SK, Jo JH, Park YC, Jin YS, Seo JH. 2017. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Enzyme Microb. Technol. 101: 30-35.
  14. Kwak S, Kim SR, Xu H, Zhang GC, Lane S, Kim H, et al. 2017. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 114: 2581-2591.
  15. Liu JJ, Kong II, Zhang GC, Jayakody LN, Jayakody LN, Kim H, et al. 2016. Metabolic engineering of probiotic Saccharomyces boulardii. Appl. Environ. Microbiol. 82: 2280-2287.
  16. Zhang GC, Kong II, Kim H, Liu JJ, Cate JHD, Jin YS. 2014. Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 Nuclease. Appl. Environ. Microbiol. 80: 7694-7701.
  17. Lee YG, Jin YS, Cha YL, Seo JH. 2017. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour. Technol. 228: 355-361.
  18. Jung HJ, Kim SK, Min WK, Lee SS, Park K, Park YC, et al. 2011. Polycationic amino acid tags enhance soluble expression of Candida antarctica lipase B in recombinant Escherichia coli. Biopocess Biosyst. Eng. 34: 833-839.
  19. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, et al. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12: 1295-1309.
  20. Lee Y, Sugihara K, Gillilland MG, 3rd, Jon S, Kamada N, Moon JJ. 2020. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19: 118-126.
  21. Zeng Z, Ouyang J, Sun LH, Zeng F, Wu SZ. 2022. A biomarker-responsive nanosystem with colon-targeted delivery for ulcerative colitis's detection and treatment with optoacoustic/NIR-II fluorescence imaging g. Adv. Healthc. Mater. 11: e2201544.
  22. Wan P, Liu X, Xiong Y, Ren Y, Chen J, Lu N, et al. 2016. Extracellular ATP mediates inflammatory responses in colitis via P2 x 7 receptor signaling. Sci. Rep. 6: 19108.
  23. Chung CH, Jung W, Keum H, Kim TW, Jon S. 2020. Nanoparticles derived from the natural antioxidant rosmarinic acid ameliorate acute inflammatory bowel disease. ACS Nano 14: 6887-6896.
  24. Tommassen J, Leunissen J, van Damme-Jongsten M, Overduin P. 1985. Failure of E. coli K-12 to transport PhoE-LacZ hybrid proteins out of the cytoplasm. EMBO J. 4: 1041-1047.
  25. Lee HJ, Shin DJ, Han K, Chin YW, Park JP, Park K, et al. 2022. Simultaneous production of 2'-fucosyllactose and difucosyllactose by engineered Escherichia coli with high secretion efficiency. Biotechnol. J. 17: e2100629.
  26. Zhang W, Zhao HL, Xue C, Xiong XH, Yao XQ, Li XY, et al. 2006. Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnol. Prog. 22: 1090-1095.
  27. Mori A, Hara S, Sugahara T, Kojima T, Iwasaki Y, Kawarasaki Y, et al. 2015. Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. J. Biosci. Bioeng. 120: 518-525.
  28. Bae JH, Sung BH, Seo JW, Kim CH, Sohn JH. 2016. A novel fusion partner for enhanced secretion of recombinant proteins in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 100: 10453-10461.
  29. Peters TW, Miller AW, Tourette C, Agren H, Hubbard A, Hughes RE. 2015. Genomic analysis of ATP efflux in Saccharomyces cerevisiae. G3 (Bethesda) 6: 161-170.
  30. Ford SR, Chenault KH, Bunton LS, Hampton GJ, McCarthy J, Hall MS, et al. 1996. Use of firefly luciferase for ATP measurement: other nucleotides enhance turnover. J. Biolumin. Chemilumin. 11: 149-167.
  31. Maeda M. 2003. New label enzymes for bioluminescent enzyme immunoassay. J. Pharm. Biomed. Anal. 30: 1725-1734.
  32. Vieites JM, Navarro-Garcia F, Perez-Diaz R, Pla J, Nombela C. 1994. Expression and in vivo determination of firefly luciferase as gene reporter in Saccharomyces cerevisiae. Yeast 10: 1321-1327.
  33. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. 2014. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104: 15.25.1-15.25.14.