DOI QR코드

DOI QR Code

Novel Heptaplex PCR-Based Diagnostics for Enteric Fever Caused by Typhoidal Salmonella Serovars and Its Applicability in Clinical Blood Culture

  • Hyun-Joong Kim (Department of Food Engineering, Mokpo National University) ;
  • Younsik Jung (Institute of Life Sciences and Resources and the Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Mi-Ju Kim (Institute of Life Sciences and Resources and the Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Hae-Yeong Kim (Institute of Life Sciences and Resources and the Department of Food Science and Biotechnology, Kyung Hee University)
  • Received : 2023.07.24
  • Accepted : 2023.08.14
  • Published : 2023.11.28

Abstract

Enteric fever is caused by typhoidal Salmonella serovars (Typhi, Paratyphi A, Paratyphi B, and Paratyphi C). Owing to the importance of Salmonella serovars in clinics and public hygiene, reliable diagnostics for typhoidal serovars are crucial. This study aimed to develop a novel diagnostic tool for typhoidal Salmonella serovars and evaluate the use of human blood for clinically diagnosing enteric fever. Five genes were selected to produce specific PCR results against typhoidal Salmonella serovars based on the genes of Salmonella Typhi. Heptaplex PCR, including genetic markers of generic Salmonella, Salmonella enterica subsp. enterica, and typhoidal Salmonella serovars, was developed. Typhoidal Salmonella heptaplex PCR using genomic DNAs from 200 Salmonella strains (112 serovars) provided specifically amplified PCR products for each typhoidal Salmonella serovar. These results suggest that heptaplex PCR can sufficiently discriminate between typhoidal and non-typhoidal Salmonella serovars. Heptaplex PCR was applied to Salmonella-spiked blood cultures directly and provided diagnostic results after 12- or 13.5-h blood culture. Additionally, it demonstrated diagnostic performance with colonies recovered from a 6-h blood culture. This study provides a reliable DNA-based tool for diagnosing typhoidal Salmonella serovars that may be useful in clinical microbiology and epidemiology.

Keywords

Acknowledgement

This Research was supported by Research Funds of Mokpo National University in 2021. We are grateful for the clinical isolates of Salmonella Paratyphi A from the Asian Bacterial Bank (ABB) of the Asia Pacific Foundation for Infectious Diseases (APFID).

References

  1. Andino A, Hanning I. 2015. Salmonella enterica: survival, colonization, and virulence differences among serovars. Sci. World J. 2015: 520179.
  2. Bhan MK, Bah R., Bhatnagar S. 2005. Typhoid and paratyphoid fever. Lancet Infect. Dis. 366: 749-762. https://doi.org/10.1016/S0140-6736(05)67181-4
  3. Crump JA, Sjolund-Karlsson M, Gordon MA, Parry CM. 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 28: 901-937. https://doi.org/10.1128/CMR.00002-15
  4. Grimont PAD, Weill FX. 2015. Antigenic formulas of the Salmonella serovars, 9th edition. W.H.O. Collaborating Centre for Reference and Research on Salmonella. Institute Pasteur, Paris, France.
  5. Andrews JR, Ryan ET. 2015. Diagnostics for invasive Salmonella infections: current challenges and future directions. Vaccine 33: C8-C15. https://doi.org/10.1016/j.vaccine.2015.02.030
  6. Crump JA, Luby SP, Mintz ED. 2004. The global burden of typhoid fever. Bull. World Health Organ. 82: 346-353.
  7. Gal-Mor O, Boyle EC, Grassl GA. 2014. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front. Microbiol. 5: 00391.
  8. Gibani MM, Britto C, Pollard AJ. 2018. Typhoid and paratyphoid fever: a call to action. Curr. Opin. Infect. Dis. 31: 440-448. https://doi.org/10.1097/QCO.0000000000000479
  9. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M, Roy SL, et al. 2011. Foodborne illness acquired in the United Statesmajor pathogens. Emerg. Infect. Dis. 17: 7-15. https://doi.org/10.3201/eid1701.P11101
  10. Connor BA, Schwartz E. 2005. Typhoid and paratyphoid fever in travelers. Lancet Infect. Dis. 5: 623-628. https://doi.org/10.1016/S1473-3099(05)70239-5
  11. Ngan GJY, Ng LM, Lin RT, Teo JW. 2010. Development of a novel multiplex PCR for the detection and differentiation of Salmonella enterica serovars Typhi and Paratyphi A. Res. Microbiol. 161: 243-248. https://doi.org/10.1016/j.resmic.2010.03.005
  12. Bhutta ZA. 2006. Current concepts in the diagnosis and treatment of typhoid fever. BMJ 333: 78-82. https://doi.org/10.1136/bmj.333.7558.78
  13. Wain J, Hosoglu S. 2008. The laboratory diagnosis of enteric fever. J. Infect. Dev. Ctries. 2: 421-425. https://doi.org/10.3855/jidc.155
  14. Clark AE, Kaleta EJ, Arora A, Wolk, DM. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 26: 547-603. https://doi.org/10.1128/CMR.00072-12
  15. Kuhns M, Zautner AE, Rabsch W, Zimmermann O, Weig M, Bader O, et al. 2012. Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry. PLoS One 7: e40004.
  16. Hatta M, Smits HL. 2007. Detection of Salmonella typhi by nested polymerase chain reaction in blood, urine, and stool samples. Am. J. Trop. Med. Hyg. 76: 139-143. https://doi.org/10.4269/ajtmh.2007.76.139
  17. Massi MN, Gotoh A, Bishnu A, Kawabata M, Shirakawa T, Gotoh A, et al. 2003. Rapid diagnosis of typhoid fever by PCR assay using one pair of primers from flagellin gene of Salmonella typhi. J. Infect. Chemother. 9: 233-237. https://doi.org/10.1007/s10156-003-0256-4
  18. Massi MN, Shirakawa T, Gotoh A, Bishnu A, Hatta M, Kawabata M, et al. 2005. Quantitative detection of Salmonella enterica serovar Typhi from blood of suspected typhoid fever patients by real-time PCR. Int. J. Med. Microbiol. 295: 117-120. https://doi.org/10.1016/j.ijmm.2005.01.003
  19. Prakash P, Mishra OP, Singh AK, Gulati AK, Nath G. 2005. Evaluation of nested PCR in diagnosis of typhoid fever. J. Clin. Microbiol. 43: 431-432. https://doi.org/10.1128/JCM.43.1.431-432.2005
  20. Hirose K, Itoh KI, Nakajima H, Kurazono T, Yamaguchi M, Moriya K, et al. 2002. Selective amplification of tyv (rfbE), prt (rfbS), viaB, and fliC genes by multiplex PCR for identification of Salmonella enterica serovars Typhi and Paratyphi A. J. Clin. Microbiol. 40: 633-636. https://doi.org/10.1128/JCM.40.02.633-636.2002
  21. Ou HY, Ju CTS, Thong KL, Ahmad N, Deng Z, Barer MR, et al. 2007. Translational genomics to develop a Salmonella enterica serovar Paratyphi A multiplex polymerase chain reaction assay. J. Mol. Diagn. 9: 624-630. https://doi.org/10.2353/jmoldx.2007.070064
  22. Levy H, Diallo S, Tennant SM, Livio S, Sow SO, Tapia M, et al. 2008. PCR method to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella isolates from the blood of patients with clinical enteric fever. J. Clin. Microbiol. 46: 1861-1866. https://doi.org/10.1128/JCM.00109-08
  23. Woods DF, Reen FJ, Gilroy D, Buckley J, Frye JG, Boyd EF. 2008. Rapid multiplex PCR and real-time TaqMan PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi C. J. Clin. Microbiol. 46: 4018-4022. https://doi.org/10.1128/JCM.01229-08
  24. Kim HJ, Park SH, Kim HY. 2006. Genomic sequence comparison of Salmonella enterica serovar Typhimurium LT2 with Salmonella genomic sequences, and genotyping of salmonellae by using PCR. Appl. Environ. Microbiol. 72: 6142-6151. https://doi.org/10.1128/AEM.00138-06
  25. Kim HJ, Park SH, Lee TH, Nahm BH, Chung YH, Seo KH, et al. 2006. Identification of Salmonella enterica serovar Typhimurium using specific PCR primers obtained by comparative genomics in Salmonella serovars. J. Food. Protect. 69: 1653-1661. https://doi.org/10.4315/0362-028X-69.7.1653
  26. Park SH, Kim HJ, Cho WH, Kim JH, Oh MH, Kim SH, et al. 2009. Identification of Salmonella enterica subspecies I, Salmonella enterica serovars Typhimurium, Enteritidis and Typhi using multiplex PCR. FEMS Microbiol. Lett. 301: 137-146. https://doi.org/10.1111/j.1574-6968.2009.01809.x
  27. Malorny B, Hoorfar J, Bunge C, Helmuth R. 2003. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl. Environ. Microbiol. 69: 290-296. https://doi.org/10.1128/AEM.69.1.290-296.2003
  28. Seo KH, Valentin-Bon IE, Brackett RE, Holt PS. 2004. Rapid, specific detection of Salmonella enteritidis in pooled eggs by real-time PCR. J. Food Prot. 67: 864-869. https://doi.org/10.4315/0362-028X-67.5.864
  29. Chung YH, Kim SY, Chang YH. 2003. Prevalence and antibiotic susceptibility of Salmonella isolated from Foods in Korea from 1993 to 2001. J. Food Prot. 66: 1154-1157. https://doi.org/10.4315/0362-028X-66.7.1154
  30. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214. https://doi.org/10.1089/10665270050081478
  31. Al-Emran HM, Hahn A, Baum J, Espinoza LMC, Deerin J, Im J, et al. 2016. Diagnosing Salmonella enterica serovar Typhi infections by polymerase chain reaction using EDTA blood samples of febrile patients from Burkina Faso. Clin. Infect. Dis. 62: S37-41. https://doi.org/10.1093/cid/civ770
  32. Haque A, Ahmed J, Qureshi JA. 1999. Early detection of typhoid by polymerase chain reaction. Ann. Saudi. Med. 19: 337- 340. https://doi.org/10.5144/0256-4947.1999.337
  33. Song JH, Cho H, Park MY, Na DS, Moon HB, Pai CH. 1993. Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction. J. Clin. Microbiol. 31: 1439-1443. https://doi.org/10.1128/jcm.31.6.1439-1443.1993
  34. Zhou L, Pollard AJ. 2010. A fast and highly sensitive blood culture PCR method for clinical detection of Salmonella enterica serovar Typhi. Ann. Clin. Microbiol. Antimicrob. 9: 14.
  35. Kaye D, Palmieri M, Rocha H. 1966. Effect of bile on the action of blood against Salmonella J. Bacteriol. 91: 945-952. https://doi.org/10.1128/jb.91.3.945-952.1966