DOI QR코드

DOI QR Code

Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구

A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process

  • 주성호 (한국지질자원연구원 자원활용연구본부) ;
  • 신동주 (한국지질자원연구원 자원활용연구본부) ;
  • 이동석 (한국지질자원연구원 자원활용연구본부) ;
  • 신선명 (한국지질자원연구원 자원활용연구본부)
  • Sung-Ho Joo (Resources Recycling Research Center, Resources Utilization Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Dong Ju Shin (Resources Recycling Research Center, Resources Utilization Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Dongseok Lee (Resources Recycling Research Center, Resources Utilization Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Shun Myung Shin (Resources Recycling Research Center, Resources Utilization Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 투고 : 2022.12.16
  • 심사 : 2023.01.17
  • 발행 : 2023.02.28

초록

Li-Al-Si를 함유한 유리세라믹 순환자원은 인덕션, 방화유리, 비젼냄비 등 리튬의 전체 소비량 중 14%로 리튬이온전지 다음으로 많이 쓰인다. 따라서 리튬의 수요가 폭발하고 있는 현재 새로운 리튬 자원을 찾아야 하고 이로부터 리튬의 회수 연구가 필요하다. 본 연구는 이러한 맥락하에 Li을 함유한 새로운 순환자원인 Li-Al-Si 유리세라믹으로부터 리튬을 회수하기 위한 연구를 수행하였다. 본 연구에서는 1.5% Li, 9.4% Al, 28.9% Si를 함유한 Li-Al-Si 유리세라믹 중 방화유리를 원료물질로 사용하였다. 방화유리로부터 리튬을 회수하기 위한 공정은 크게 칼슘 염을 투입한 건식 배소 공정과 수침출 공정으로 나뉜다. 325 mesh 이하로 분쇄된 방화유리 시료를 열처리 전과 열처리 후 칼슘 염을 투입하여 침출 실험을 비교 진행하였고 칼슘 염과 Li-Al-Si 유리세라의 투입비율에 따른 침출율, 칼슘 염 배소 온도에 따른 침출 연구도 비교 수행하였다. 수침출 연구에서는 온도, 시간, 고액비, 그리고 연속 침출횟수에 따라 리튬의 침출율 및 회수율을 비교하였다. 그 결과 Li-Al-Si를 함유한 유리세라믹 방화유리는 열처리를 반드시 수행하여 베타 형태의 스포듀민으로 상변화 시켜야 하며 이로부터 CaCO3 염을 Li-Al-Si를 함유한 유리세라믹 방화유리와 6:1의 비율로 투입하여 1000℃이상에서 배소한 후 4회 이상 연속 침출하여 리튬의 회수율을 98% 이상 획득하였고 이때 리튬의 농도는 200mg/L였다.

The glass ceramic secondary resource containing Li-Al-Si is used in inductor, fireproof glass, and transparent cookware and accounts for 14% of the total consumption of Li, which is the second most widely used after Li-ion batteries. Therefore, new Li resources should be explored when the demand for Li is exploding, and extensive research on Li recovery is needed. Herein, we recovered Li from fireproof Li-Al-Si glass ceramic, which is a new secondary resource containing Li. The fireproof glass among all Li-Al-Si glass ceramics was used as raw material that contained 1.5% Li, 9.4% Al, and 28.9% Si. The process for recovering Li from the fireproof glass was divided into two parts: (1) calcium salt roasting and (2) water leaching. In calcium salt roasting, a sample of fireproof glass was crushed and ground below 325 mesh. The leaching efficiency was compared based on the presence or absence of heat treatment of the fireproof glass. Moreover, the leaching rates based on the input ratios of calcium salt, Li-Al-Si glass, and ceramics and the leaching process based on calcium salt roasting temperatures were compared. In water leaching, the leaching and recovery rates of Li based on different temperatures, times, solid-liquid ratios, and number of continuous leaching stages were compared. The results revealed that fireproof glass ceramics containing Li-Al-Si should be heat treated to change phase to beta-type spodumene. CaCO3 salt should be added at a ratio of 6:1 with glass ceramics containing Li-Al-Si, and then leached 4 times or more to achieve a recovery efficiency of Li over 98% from a solution containing 200 mg/L of Li.

키워드

과제정보

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임("20003877")

참고문헌

  1. Kim, D.-W., Park, J.R., Ahn, N.-K. et al., 2019 : A review on the recovery of the lithium carbonate powders from lithium containing substances, J. of Korean Crystal Growth and Crystal Technology, 29(3), pp.91-106. 
  2. U.S. Geological Survery, Mineral commodity summmaries 2019. https://enernews.com/media/briefs/usgs-mineral-commodity-summarie-2019_2963.pdf, Jan 25, 2023. 
  3. Galaxy Resources Limited, Jiangsu lithium carbonate plant. http://www.galaxyresources.com.au/project_jiangsu.shtml, September 20, 2022. 
  4. Galaxy Resources Limited, Promising lithium carbonate preliminary results 2008. http://www.galaxyresources.com.au/documents/GXY03LithiumCarbonateTestworkResults.pdf, September 20, 2022. 
  5. Laferriere, A., Dessureault, Y., Live, P., et al., Preliminary economic assessment of the Whabouchi lithium deposit and hydromet plant. http://www.nemaskalithium.com/documents/files/43-101/2012-014-nemaska-ni-43-101-rev-final-feb.pdf, September 20, 2022 
  6. Medina, L.F., El-Naggar, M.M.A.A., 1984 : An alternative method for the recovery of lithium from spodumene, Metallurgical Transactions B, 15(4), pp.725-726.  https://doi.org/10.1007/BF02657295
  7. Chen, Y., Tian, Q., Chen, B., et al., 2011 : Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process, Hydrometallurgy, 109, pp.43-45.  https://doi.org/10.1016/j.hydromet.2011.05.006
  8. Rosales, G.D., Ruiz, M.C., Rodriguez, M.H., et al., 2014 : Novel process for the extraction of lithium from b-spodumene by leaching with HF, Hydrometallurgy, 147, pp.1-6.  https://doi.org/10.1016/j.hydromet.2014.04.009
  9. Chon, U., Han, G., Kim, K., et al., 2010 : Current Status of Lithium Resources, J. of Korean Inst. of Resources Recycling, 19(3), pp.3-8. 
  10. Meng, F., McNeice, J., Zadeh, S.S., et al., 2021: Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries, Mineral Processing and Extractive Metallurgy Review, 42(2), pp.123-141.  https://doi.org/10.1080/08827508.2019.1668387
  11. Wilkomirsky, I., 1999, US, 5993759. 
  12. Boryta, D.A., Kullberg, T.F., Thurston A.M., 2011, US, 8057764. 
  13. Atashi, H., Sarkari, M., Zeinali, M., et al., 2010 : Recovery of magnesium chloride from resulting potash unit concentrate case study: Iran Great Desert brine, Australian Journal of Basic and Applied Sciences, 4(10), pp.4766-4471. 
  14. Nguyen, V.T., Lee, J.C., Kim, B.S., et al., 2015 : The Separation and Recovery of Nickel and Lithium from the Sulfate Leach Liquor of Spent Lithium Ion Batteries using PC-88A, Korean Chemical Engineering Research, 53(2), pp.137-144.  https://doi.org/10.9713/KCER.2015.53.2.137
  15. Zhang, P., Yokoyama, T., Itabashi, O., et al., 1998 : Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47, pp.259-271.  https://doi.org/10.1016/S0304-386X(97)00050-9
  16. Granata, G., Moscardini, E., Pagnanelli, F., et al., 2012 : Product recovery from Li-ion battery waste coming from an industrial pre-treatment plant: lab scale tests and process simulations. Journal of Power sources, 206, pp.393-401.  https://doi.org/10.1016/j.jpowsour.2012.01.115
  17. Lee, D.S., Joo, S.-H., Shin, D.J., et al., 2021: Evaluation of leaching characteristic and kinetic study of lithium from lithium aluminum silicate glass-ceramics by NaOH, Journal of environmental sciences, 97, pp., 98-110.  https://doi.org/10.1016/j.jes.2021.02.001
  18. Lee, D.S., Joo, S.-H., Shin, D.J., et al., 2022 : Enhancement of leaching efficiency for Li by phase transformation from lithium aluminum silicate (LAS) glass-ceramics, Hydrometallurgy, 208, pp.105781 
  19. Lee, D.S., Joo, S.-H., Shin, D.J., et al., 2022 : Recovery of Li from lithium aluminum silicate (LAS) glass-ceramics after heat treatment at 1000 ℃ and Ca salt-assisted water leaching in two stages before and after calcination at 600 ℃, Hydrometallurgy, 211, pp.105876. 
  20. Wikipedia, Calcium hydroxide. https://en.wikipedia.org/wiki/Calcium_hydroxide, January 06, 2023.